• Title/Summary/Keyword: Radar Performance

Search Result 988, Processing Time 0.024 seconds

Study on the High Speed Frequency Synthesizer with Low Phase Noise for Radar (레이다용 낮은 위상잡음을 갖는 초고속 주파수 합성기에 관한 연구)

  • Choi, Chang-Ho;Lee, Seung-Joo
    • The Journal of Information Technology
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2009
  • In this paper, frequency synthesizer for radar system is designed and developed. Optimizing the phase noise and lock time, each module is designed as two-type PLL circuit, and then the performance of PLL frequency synthesizer is compared. The experiment result shows the lock time of 70 usec, the phase noise of less then 100 dBc, the bandwidth above 500MHz.

  • PDF

Analysis of Active Safety System and UWB Radar Technology for Vehicle (이동 객체용 능동 안전시스템 및 UWB 레이더 기술 분석)

  • Kim, Sang-Dong;Lee, Jong-Hun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.3
    • /
    • pp.167-174
    • /
    • 2008
  • This paper presents the technology trend of various active safety systems for vehicle. The safety system is applied to various industry fields and is expected to be spread all over the market. So far, good examples of the developed active safety systems are ACC(Adaptive Cruise Control), CMS(Collision Mitigation Systems) and APSS(Active Pedestrian Safety Systems). And, a basic operation principle, system model and detection performance in a UWB radar for vehicle is investigated.

  • PDF

Analysis of Target Identification Performances against the Moving Targets Using a Bistatic Radar (바이스태틱 레이다를 이용한 이동표적에 대한 표적식별 성능 분석)

  • Lee, Seung-Jae;Bae, Ji-Hoon;Jeong, Seong-Jae;Yang, Eunjung;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.2
    • /
    • pp.198-207
    • /
    • 2016
  • Bistatric radar can perform detection and identification for stealth targets that are rarely detected by the conventional monostatic radar. However, high resolution range profile(HRRP) generated from the received signal in the bistatic radar cannot show exact range information of the target because the bistatic geometry lead to the distortions of the bistatic HRRP. In addition, electromagnetic scattering mechanisms of the target are varied depending on the bistatic geometry. Thus, efficient database construction is a crucial factor to achieve successful classification capability in bistatic target identification. In this paper, a database construction method based on realistic flight scenarios of a target, which provides a reliable identification performance for the monostatic radar, is applied to bistatic target identification. Then, the capability and efficiency of the method is analyzed. Simulation results show that reliable identification performance can be achieved using the database construction based on the flight scenarios when the target is a considerable distance away from the bistatic radar.

Analysis of SAR Interference Suppression Techniques using Eigen-subspace based Filter (고유치 기반 필터를 이용한 위성 SAR 영상 간섭신호 제거 기법)

  • Lee, Bo-Yun;Kim, Bum-Seung;Song, Jung-Hwan;Lee, Woo-Kyung
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.63-68
    • /
    • 2017
  • SAR(Synthetic Aperture Radar) uses electromagnetic signals to acquire ground information and has been used for wide coverage reconnaissance missions regardless of weather conditions. However SAR is known to be vulnerable to interference signals by other communication devices or radar instruments and may suffer from undesirable performance degradations and image quality. In this paper, a modified Eigen-subspace based filter is proposed that can be easily applied to SAR images affected by interference signals. The method of constructing Eigen-subspace based filter is briefly described and various simulations are performed to show the performance of the interference mitigation process. The suppression filter is applied to a ALOS PALSAR raw data affected by interfering signals in order to verify its superiority over the Notch filter.

Compressive Sensing for MIMO Radar Systems with Uniform Linear Arrays (균일한 선형 배열의 다중 입출력 레이더 시스템을 위한 압축 센싱)

  • Lim, Jong-Tae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.80-86
    • /
    • 2010
  • Compressive Sensing (CS) has been widely studied as a promising technique in many applications. The CS theory tells that a signal that is known to be sparse in a specific basis can be reconstructed using convex optimization from far fewer samples than traditional methods use. In this paper, we apply CS technique to Multiple-input multiple-output (MIMO) radar systems which employ uniform linear arrays (ULA). Especially, we investigate the problem of finding the direction-of-arrival (DOA) using CS technique and compare the performance with the conventional adaptive MIMO techniques. The results suggest the CS method can provide the similar performance with far fewer snapshots than the conventional adaptive techniques.

Mariner's Information Processing Characteristics in Ship-to-Ship Collision Situation (선박간 충돌 위험상황에서의 항해사 정보처리 특성에 관한 연구)

  • Kim, Bi-A;Oh, Jin-Seok;Lee, Se-Won;Lee, Jae-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.1
    • /
    • pp.46-50
    • /
    • 2008
  • The purpose of the present study was to investigate the mariner's information characteristics in ship-ta-ship collision situation using the full mission ship-handling simulator. Risk levels of ship-to-ship collision were manipulated by whether the target ship complies with the naval regulations and by movement patterns of target ship. Dependent variables reflecting mariner's information characteristics in ship-ta-ship collision situation were measured in terms of radar detection reaction time, free recall performance of past navigation situation, and subjective ratings for the task difficulty. The results showed that, in general, the mariners appeared to be deteriorated in their radar detection reaction time and free recall performance as the risk of ship-ta-ship collision increased. Also, the mariners tended to rate required tasks more difficult in the high risk ship-ta-ship collision situation.

Performance Improvement of Wave Information Retrieval Algorithm Using Noise Reduction

  • Lee, Byung-Gil;Lim, Dong-hee;Kim, Jin-soo
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.175-181
    • /
    • 2017
  • This paper describes the upgrade of an existing wave information retrieval algorithm by employing noise reduction in the pixel domain. Several algorithms for collecting wave information parameters from X-band radar image sequences including the wind field and current velocity have been developed over the past three decades. Using these algorithms, a band-pass filter (BPF) is applied to remove the non-wave contribution from the image spectra after the sea surface current velocity has been computed. However, such BPF designs have been both complex and insufficient in removing undesired components in X-band radar images. For this study, to improve the performance of wave information retrieval, an efficient noise reduction algorithm is incorporated into a regular wave information retrieval process. That is, the proposed algorithm was designed for operation in a more proper manner by effectively removing the undesired components in the pixel domain. Experiment results demonstrate that the proposed algorithm produces very close estimates to the buoy data records under undesirable noise conditions.

Frequency Reuse Method for Multi-Site Weather Radar (Multi-site 기상 레이다를 위한 주파수 재사용 기법)

  • Lim, Sun-Min;Yoon, Young-Keun;Lee, Young-Hwan;Chong, Young-Jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.2
    • /
    • pp.109-116
    • /
    • 2014
  • In this paper, we propose a frequency reuse method for efficient frequency use of multi-site weather radar. Our method uses a set of orthogonal pulse compression codes and CLEAN algorithm for sidelobe interference cancellation. Computer simulation results show that performance of proposed method meet performance requirements of [1], The current S-band weather radars in South Korea use the 8 different frequency channels to avoid interference. Using proposed method, number of occupied channels can reduce from 8 to 1, the 7 frequency channels may be use for other services.

A Study on the Performance of a Radar Clutter Suppression Algorithm Based on the Adaptive Clutter Prewhitening Filter and Droppler Filter Bank (Adaptive Clutter Prewhitening Filter와 Doppler Filter Bank를 이용한 레이다 Clutter 제거 알고리듬의 성능에 관한 연구)

  • Kim, Yong-Ho;Lee, Hwang-Soo;Un, Chong-Kwan;Lee, Won-Kil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.140-146
    • /
    • 1989
  • In many situations, radar targets are embedded in a clutter environment and clutter rejection is required. The clutter is unwanted radar echoes and may arise owing to reflections from ground and weather disturbances and statistical properties of the clutter vary with range and azimuth as well as time. That is, adaptive signal processing is required. In this paper, a clutter suppression algorithm based on the clutter whitening filter (WF) and doppler filter bank(DFB) is described which provides improved performance compared with conventional nonadaptive clutter suppression algorithm that is the cascaded moving target indicator (MTI) and (DFB). The clutter whitening filter algorithm is based on the Burg's maximum entropy method.

  • PDF

Performance Analysis on the IMM-PDAF Method for Longitudinal and Lateral Maneuver Detection using Automotive Radar Measurements (차량용 레이더센서를 이용한 IMM-PDAF 기반 종-횡방향 운동상태 검출 및 추정기법에 대한 성능분석)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.224-232
    • /
    • 2015
  • In order to develop an active safety system which avoids or mitigates collisions with preceding vehicles such as autonomous emergency braking (AEB), accurate state estimation of the nearby vehicles is very important. In this paper, an algorithm is proposed using 3 dynamic models to better estimate the state of a vehicle which has various dynamic patterns in both longitudinal and lateral direction. In particular, the proposed algorithm is based on the Interacting Multiple Model (IMM) method which employs three different dynamic models, in cruise mode, lateral maneuver mode and longitudinal maneuver mode. In addition, a Probabilistic Data Association Filter (PDAF) is utilized as a data association algorithm which can improve the reliability of the measurement under a clutter environment. In order to verify the performance of the proposed method, it is simulated in comparison with a Kalman filter method which employs a single dynamic model. Finally, the proposed method is validated using radar data obtained from the field test in the proving ground.