• Title/Summary/Keyword: Radar Performance

Search Result 993, Processing Time 0.025 seconds

Dynamic Determination of IMM Mode Transition Probability for Multi-Radar Tracking (다중 레이더 추적을 위한 IMM 모드 천이 확률의 동적 결정)

  • Jeon, Dae-Keun;Eun, Yeon-Ju;Ko, Hyun;Yeom, Chan-Hong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • A method is presented of dynamic determination of mode transition probability for IMM in order to improve the accuracy performance of maneuvering target tracking for air traffic control surveillance processing system under multiple radar environment. It is shown that dynamic determination of mode transition probability based on the time intervals between the data input from multiple radars gives the optimized performance in terms of position estimation accuracy.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

A Study of Observability Analysis and Data Fusion for Bias Estimation in a Multi-Radar System (다중 레이더 환경에서의 바이어스 오차 추정의 가관측성에 대한 연구와 정보 융합)

  • Won, Gun-Hee;Song, Taek-Lyul;Kim, Da-Sol;Seo, Il-Hwan;Hwang, Gyu-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.783-789
    • /
    • 2011
  • Target tracking performance improvement using multi-sensor data fusion is a challenging work. However, biases in the measurements should be removed before various data fusion techniques are applied. In this paper, a bias removing algorithm using measurement data from multi-radar tracking systems is proposed and evaluated by computer simulation. To predict bias estimation performance in various geometric relations between the radar systems and target, a system observability index is proposed and tested via computer simulation results. It is also studied that target tracking which utilizes multi-sensor data fusion with bias-removed measurements results in better performance.

A Study on the Design of the Radar Data Integrating System (레이다 정보처리용 통합 정보처리 시스템 셜계에 관한 연구)

  • 이상웅;최진일;라극환;양기덕;조동래
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.5
    • /
    • pp.798-811
    • /
    • 1995
  • In this study, radar data integrating and processing systems were designed for the data processing of various information from many kinds of radar in a single data processing system. The characteristics of the data integrating system were analyzed by the system simulation with the queueing theory. The designed data integrating systems can be divided into a centralized and a distributed type. In the system structure, we used UNIX message que as the real time processor and the queueing theory for the performance evaluation of the information flow in the systems. For the analysis of the performance of inforamtion flow in both models, queueing theory was applied to and implemented with the simulation package, OPNET system and C language. From the simulation result we could understand the system factors which effect the system performance and characteristics on the data processing.

  • PDF

Wideband Chirp Waveform Simulation and Performance Analysis for High Range Resolution Radar Imaging (고해상도 영상 레이다의 광대역 첩 신호 파형 발생 시뮬레이션과 성능 분석)

  • Kwag, Young Kil
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.97-103
    • /
    • 2002
  • A recent technology trends in synthetic aperture radar(SAR) requires the ultra high resolution performance in detecting and precisely identifying the targets. In this paper, as a technique for enhancing the radar range resolution, the wide band chirp connection algorithm is presented by stitching the several chirp modules with unit bandwidth based on the linear frequency modulated chirp signal waveform. The principles of the digital chirp signal generation and its architecture for implementation is described with the wide band chirp signal generator, modulator, and demodulator. The performance analysis for the presented algorithm is given with the simulation results.

  • PDF

Heart beat and Respiration Detection Performance of CW radar Based on New Signal Model (새로운 신호모델에 의한 CW 레이다 심장박동 및 호흡검출 성능분석)

  • Lee, Byung-Seub
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.28-33
    • /
    • 2017
  • In this paper, new signal model for bio-signal detection, i.e heart beat and respiration, using CW radar. Most research on this similar topic are based on the conventional signal model which is not correct in envisaging reflected signal from the human body. The system developed based on this conventional model can not predict exact performance of the system. So in this paper modified signal model for bio-radar is proposed and then simulation for detecting heartbeat and respiration signal in AWGN, multipath environment. The detection performance difference between two signal models are discussed.the modified

On the Performance Enhancement of a Tactical Monopulse MIMO Radar (향상된 성능의 전술형 모노펄스 MIMO 레이더)

  • An, Chan-Ho;Jin, Hyun Bo;Yang, Janghoon;Pak, Ui Young;Ryu, Young-Jae;Kim, Dong Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.1
    • /
    • pp.19-25
    • /
    • 2013
  • In this paper, we proposed an enhanced monopulse MIMO radar system for the tactical scenario where the ground receivers are connected wireless backhaul and closely spaced. By applying the ${\alpha}{\beta}$ filter to the conventional monopulse MIMO radar, we show that the localization performance can be improved significantly. We also propose an efficient localization algorithm for a system with lower rate feedback. Using numerical simulations, we demonstrate that the proposed scheme can improve the localization performance while reducing the feedback over conventional scheme.

Performance Comparison of Radar Signal Active Cancellation Systems According to Pulsed-CW Parameter Estimation Error (Pulsed-CW 신호 파라미터 추정 오차에 따른 레이더 신호 능동 상쇄 성능 비교)

  • Choi, Seung-Kyu;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.10
    • /
    • pp.60-66
    • /
    • 2011
  • In this paper, we analyze the effects of estimation error in the active cancellation signal, which is intended to counter the pulsed-CW signal of a hostile radar. We also examine the effects of estimation error in maximum-likelihood estimation (MLE) and quadratic interpolation scheme from a radar signal active cancellation viewpoint. Then, we modify the correlation-based error compensation scheme which mitigates the estimation error of MLE to improve the performance of the active cancellation signal. Finally, we present simulation results to show that the correlation-based scheme has better performance than the other in terms of radar signal active cancellation.

Performance Improvement Approach to Naval Gun Fire Control System Based on Linear Target Tracking Filter with Radar Line-of-sight Measurements (레이다 시선 측정치를 활용하는 선형 표적 추적필터 기반 함포 사격제원계산장치 성능향상 방법)

  • Uisuk Suh
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.446-456
    • /
    • 2024
  • This paper addresses a novel approach to performance enhancement of the naval gun fire control system(FCS) by using the projectile tracking filter without any distortion of radar measurements. Under the assumption that the maneuvering between the projectile and the ship equipped with the radar is not quite large, this method is based on the concept of polar-coordinate target tracking, which separates the range estimation filter and the direction cosine estimation filter. Note that using polar-coordinates allows tracking to be performed in the same coordinate system from which the radar line-of-sight(LOS) measurements are obtained, unlike the conventional tracking process in Cartesian. Also, it is easy to implement in real-time and guarantees consistent estimates due to its linear filter structure. With the help of the above method, therefore, the proposed filter is able to improve the overall performance of FCS which requires stability of projectile estimates within a short engagement time. The effectiveness of the presented scheme is validated through computer simulations.

Development of a Comprehensive Performance Test Facility for Small Millimeter-wave Tracking Radar (소형 추적 레이다용 종합성능시험 시설 개발)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.121-127
    • /
    • 2020
  • The small tracking radar targets the target in a real-time, fast-moving, fast-moving target against aircraft with a large RCS that is maneuvering at low speed and a small RCS aircraft maneuvering at high speed (fighters, drones, helicopters, etc.) It is a pulsed radar that detects and tracks. Performing a performance test on a tracking radar in a real environment is expensive, and it is difficult to quantitatively measure performance in a real environment. Describes the composition of the laboratory environment's comprehensive performance test facility and the main requirements and implementation of each configuration.Anechoic chambers to simulate the room environment, simulation target generator to simulate the signal of the room target, target It is composed of a horn antenna driving device to simulate the movement of a vehicle and a Flight Motion Simulatior (FMS) to simulate the flight environment of a tracking radar, and each design and implementation has been described.