• Title/Summary/Keyword: Radar Integration Test

Search Result 18, Processing Time 0.023 seconds

Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development (한국형 전투기(KF-X) AESA 레이다 개발 검증을 위한 점진적인 시험평가 전략)

  • Shinyoung Cho;Yongkil Kwak;Hyunseok Oh;Hyesun Ju;Hongwoo Park
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.387-394
    • /
    • 2024
  • This paper describes a progressive test and evaluation strategy for verification of Korean Fighter eXperimental (KF-X) AESA(Active Electronically Scanned Array) radar development. Three progressive stages of development test and evaluation were officially performed from simulated test conditions to actual operating conditions according to standards: radar function/performance and avionics integration. KF-X AESA radar development is repeatedly verified by progressive stages consisting of five tests: Roof-lab ground test, System Integration Laboratory(SIL) ground test, Flying Test Bed(FTB) test, KF-X ground test, and KF-X flight test. As a result, the risk factor decreases as stages and tests progress. Therefore, development test and evaluation of KF-X AESA radar are successfully performed at low development risk.

Radar Echo Signal Simulation Equipment with a Precise Range-velocity Control Capability (정밀 거리-속도 모사 기능을 갖는 레이더 반사 신호 모의장치)

  • Han, Il-Tak;Kim, Jong-Mann;Kim, Wan-Kyu;Lee, Min-Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1139-1146
    • /
    • 2010
  • Simulated target generators are used to evaluate the various radar performance. Using the radar parameters such as target range(time delay), doppler frequency, target RCS, simulated target generator can be developed. Especially moving targets are simulated by control time delay and update target signal intensive for target range. Base on this concepts, in this paper, simulated target generators are designed and developed for X-band Radar performance test. Developed equipment is evaluated its performance and then tested with X-band Radar. This paper presents these design, development, and test results of developed target generator.

Implementation of AESA Radar Integration Analysis System by using Heterogeneous Media

  • Min-Jung Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, implement and propose an Active Electronically Scanned Array (AESA) radar integration analysis system which specialized for radar development by using heterogeneous media. Most analysis systems are used to analyze and improve the cause of defects, so they help the test easier. However, previous log analysis systems that operate only based on text are not intuitive and difficult to find the information user want at once if there is a lot of log information. so when an equipment defect occurs, there are limitations in analyzing the cause of defect. Therefore, the analysis system in this paper utilizes heterogeneous media. The media defined in this paper refers to recording text-based data, displaying data as image or video and visualizing data. The proposed analysis system classifies and stores data that transmitted and received between radar devices, radar target detection and Tracking algorithm data, etc. also displays and visualizes radar operation results and equipment defect information in real time. With this analysis system, it can quickly provide information what user want and assistance in developing high quality radar.

Development of an FMCW Radar Altimeter Simulator Using Optical Delay Lines (광 지연선을 이용한 FMCW 전파고도계 시뮬레이터 개발)

  • Lee, Jae-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.3
    • /
    • pp.208-216
    • /
    • 2017
  • This paper presents the design method of an FMCW(frequency-modulated continuous-wave) altitude simulator which generates propagation delay signals according to target distances to test the radar altimeter. To improve the conventional RF method for creating delay signals, the simulator is designed by the RF-optics-RF method using optical delay lines. In addition, it is designed to simulate the Doppler shift and jamming that may occur in actual flight environment. In order to evaluate the performance of the developed simulator, the integration tests have been conducted with the radar altimeter. Through the test, we successfully verified the performance of the simulator.

ERS-1 AND CCRS C-SAR Data Integration For Look Direction Bias Correction Using Wavelet Transform

  • Won, J.S.;Moon, Woo-Il M.;Singhroy, Vern;Lowman, Paul-D.Jr.
    • Korean Journal of Remote Sensing
    • /
    • v.10 no.2
    • /
    • pp.49-62
    • /
    • 1994
  • Look direction bias in a single look SAR image can often be misinterpreted in the geological application of radar data. This paper investigates digital processing techniques for SAR image data integration and compensation of the SAR data look direction bias. The two important approaches for reducing look direction bias and integration of multiple SAR data sets are (1) principal component analysis (PCA), and (2) wavelet transform(WT) integration techniques. These two methods were investigated and tested with the ERS-1 (VV-polarization) and CCRS*s airborne (HH-polarization) C-SAR image data sets recorded over the Sudbury test site, Canada. The PCA technique has been very effective for integration of more than two layers of digital image data. When there only two sets of SAR data are available, the PCA thchnique requires at least one more set of auxiliary data for proper rendition of the fine surface features. The WT processing approach of SAR data integration utilizes the property which decomposes images into approximated image ( low frequencies) characterizing the spatially large and relatively distinct structures, and detailed image (high frequencies) in which the information on detailed fine structures are preserved. The test results with the ERS-1and CCRS*s C-SAR data indicate that the new WT approach is more efficient and robust in enhancibng the fine details of the multiple SAR images than the PCA approach.

Verification of Airborne Radar's Search Pattern Stabilization Capability Using SIL Environment (시스템 통합 시험 환경을 이용한 항공기 탑재 레이다의 탐색 패턴 안정화 기능 검증)

  • Ji-Eun Roh;Yong-Kil Kwak;Jin-Ju Won;Won-Jin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2024
  • The radar installed on an aircraft has various operating modes depending on tactical purposes, allowing for the configuration of search areas according to each mode's operational objectives. active electronically scanned array (AESA) radar emits search beams sequentially according to a predefined search beam grid within the designated search area specified by the pilot to detect targets within it. It is crucial that the radar can stably search the area designated by the pilot for target detection, even as the aircraft's attitude changes. This paper focuses on stabilizing the search pattern in the air-to-air operational mode of aircraft-mounted radar to ensure stable target detection during roll and pitch maneuvers of the aircraft. The paper demonstrates its performance by simulating aircraft maneuvers and targets in a system integration laboratory (SIL) test environment.

Program Development and Field Application for the use of the Integration Map of Underground Spatial Information (지하공간통합지도 활용을 위한 프로그램 개발 및 현장 적용)

  • Kim, Sung Gil;Song, Seok Jin;Cho, Hae Yong;Heo, Hyun Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • Due to the recent increase in various problems from underground development in urbanized areas, accurate underground facility information management is highly needed. Therefore, in this study, in order to utilize the Integration Map of Underground Goespatial Information in real time on-site, the function of comparing the mutual location of the GPR (Ground Penetration Radar) sensing data and the Integration Map of Underground Goespatial Information, and function of analyze underground facilities, and function of converting surveying data into a shape file through position correction & attribute editing in a 3D space, and the function of submitting the shape file to the Integration Map of Underground Goespatial Information mobile center was defined and developed as a program. In addition, for the on-site application test of the development program, scenarios used at the underground facility real-time survey site and GPR exploration site were derived, and four sites in Seoul were tested to confirm that the use scenario worked properly. Through this, the on-site utilization of the program developed in this study could be confirmed, and it would contribute to the confirmation of the quality of Shape-file and the "update automation" of "Integration Map of Underground Goespatial Information". In addition, it is expected that the development program will be further applied to the Underground Facility Map's Accuracy Improvement Diffusion Project' promoted by the MOLIT (Ministry of Land, Infrastructure, and Transport).

Launch Vehicle Telemetry MUX Test by using the Spacecraft Simulator

  • Won, Young-Jin;Lee, Jin-Ho;Yun, Seok-Teak;Kim, Jin-Hee;Lee, Sang-Ryool
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.46.3-46.3
    • /
    • 2009
  • The SAR (Synthetic Aperture Radar) satellite has the advantage of implementing the imaging mission even though it is night time, cloudy weather, and all weather conditions, which is different from the satellite with the optical payload. This is the reason why the SAR satellite comes into the spotlight in the observation satellite field. The Korea Aerospace Research Institute (KARI) has been developing the first Korean SAR satellite and is currently integrating and testing the Flight Model. For the launch vehicle service, KARI finalized the selection of the launch vehicle service provider and finished Critical Design Review (CDR) of the interface between the bus and the launch vehicle. KARI and launch vehicle service provider also finished the test of the telemetry interface between the bus and the launch vehicle. The test of the telemetry interface has the purpose of checking the interface of the telemetry which is the SOH(State-of-Health) of the satellite in an early launch stage. For this test, KARI has finished the development of the spacecraft simulator which is composed of the bus simulator to generate the analog telemetry and the launch vehicle simulator to gather the telemetry. In this research, the result of the hardware implementation and the software implementation for the spacecraft simulator were described. Finally the results of the launch vehicle telemetry MUX test which were performed at the launch vehicle provider's design office by using the spacecraft simulator were summarized. It is expected that this simulator will be used in the next test after the manufacture of the launch vehicle.

  • PDF

Development of Mobile Active Transponder for KOMPSAT-5 SAR Image Calibration and Validation (다목적실용위성 5호의 SAR 영상 검·보정을 위한 이동형 능동 트랜스폰더 개발)

  • Park, Durk-Jong;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.12
    • /
    • pp.1128-1139
    • /
    • 2013
  • KOMPSAT-5(KOrea Multi-Purpose SATellite-5) has a benefit of continuously conducting its mission in all weather and even night by loading SAR(Synthetic Aperture Radar) payload, which is different from optical sensor of KOMPSAT-2 satellite. During IOT(In-Orbit Test) periods, SAR image calibration should be conducted through ground target of which location and RCS is pre-determined. Differently from the conventional corner reflector, active transponder has a capability to change its internal transfer gain and delay, which allows active transponder to be shown in a pixel of SAR image with very high radiance and virtual location. In this paper, the development of active transponder is presented from design to I&T(Integration and Test).

SAR Test-bed to Acquire Raw Data and Form Real-time Image (실시간 영상형성 및 원시데이터 획득용 SAR 테스트 베드)

  • Shin, Hyun-Ik;Kwon, Kyoung-Il;Yoon, Sang-Ho;Kim, Hyung-Suk;Hwang, Jeonghun;Ko, Young-Chang;You, Eung-Noh;Kim, Jin-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.181-186
    • /
    • 2017
  • Synthetic aperture radar(SAR) has been widely used for reconnaissance. It provides high-resolution, day-and-night and weather-independent images for a multitude of applications. Because SAR coherently combines many viewing angles to effectively create a large aperture(narrow beam) radar, the test-bed should be capable of moving straightly SAR sensor for the integration angle to meet resolution. This paper describes the test-bed developed to test and evaluate the SAR performance. It forms high-quality images in real time and saves the raw data for the purpose of post processing on the ground.