• Title/Summary/Keyword: Radar Detection Probability

Search Result 86, Processing Time 0.029 seconds

Analysis of Detection Performance of Radar Signal Processor with Relation to Target Doppler Velocity and Clutter Spectrum Characteristics (표적 도플러 속도와 클러터 스펙트럼 특성에 따른 레이더 신호 처리기의 탐지 성능 분석)

  • Yang, Jin-Mo;Shin, Sang-Jin;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2011
  • MTI filter is used to separate target signal from clutter in many radar signal processing. By suppressing clutter before CFAR detection, the detection performance can be improved. As a radar system designed, a design engineer generally takes averaged SNR and CNR into account and does not include the effect of MTI filter's frequency response. In practice, when the signals including clutter are pass through the filter, SNR is widely varying according to target velocity and CNR is also varying according to clutter center frequency and spectrum spreading. In this paper, we have derived the relationship between the MTI filter's frequency response and a target's velocity and a clutter's spectrum characteristics. With the variation of SNR and CNR at the filter output, the detection performance of CFAR has been analyzed by the simulation and has made certain of their influences on the performance.

Markov Chain of Active Tracking in a Radar System and Its Application to Quantitative Analysis on Track Formation Range

  • Ahn, Chang-Soo;Roh, Ji-Eun;Kim, Seon-Joo;Kim, Young-Sik;Lee, Juseop
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1275-1283
    • /
    • 2015
  • Markov chains for active tracking which assigns additional track illuminations evenly between search illuminations for a radar system are presented in this article. And some quantitative analyses on track formation range are discussed by using them. Compared with track-while-search (TWS) tracking that uses scan-to-scan correlation at search illuminations for tracking of a target, active tracking has shown the maximum improvement in track formation range of about 27.6%. It is also shown that the number and detection probability of additional track beams have impact on the track formation range. For the consideration of radar resource management at the preliminary radar system design stage, the presented analysis method can be used easily without the need of Monte Carlo simulation.

Study on MMTI Signal Processing Algorithm and Analysis of the Performance for Periscope Detection in Airborne Radar (항공용 레이다를 이용한 잠망경 탐지 MMTI 신호처리 기법 연구 및 성능 분석)

  • Jung, Jae-Hoon;Lee, Jae-Min;Youn, Jae-Hyuk;Shin, Hee-Sub
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.661-669
    • /
    • 2017
  • This paper describes an MMTI(Maritime Moving Target Indicator) for periscope detection in airborne radar. Firstly, we analyze the characteristics of sea clutter, sea targets. Secondly, we study the differences between GMTI(Ground Moving Target Indicator) and MMTI. This paper proposes an optimal MMTI operating environment and method. We also suggest a signal processing algorithm using STAP(Space-Time Adaptive Processing) for detecting small RCS target moving low speed. The detection probability for moving target with MDV(Minimum Detectable Velocity) is simulated under various RCS and multi-channel system. Finally, we analyze the major performance for range, velocity and azimuth accuracy.

An Efficient Adaptive Polarization-Space-Time Domain Radar Target Detection Algorithm (3차원 (편파, 공간, 시간) 영역에서의 효율적인 적응 레이다 신호검출 알고리즘)

  • Yang, Yeon-Sil;Lee, Sang-Ho;Yoon, Sang-Sik;Park, Hyung-Rae
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.138-150
    • /
    • 2002
  • This paper addresses the problem of combining adaptive polarization processing and space-time processing for further performance improvement of radar target detection in clutter and Jammer environments. Since the most straightforward cascade combinations have quite limited performance improvement potentials, we focus on the development of adaptive processing in the joint polarization-space-time domain. Unlike a direct extension of some existing space-time processing algorithms to the joint domain, the processing algorithm developed in this paper does not need a potentially costly polarization filter bank to cover the unknown target polarization parameter. The performance of the new algorithm is derived and evaluated in terms of the probability of detection and the probability of false alarm, and it is compared with other algorithms that do not utilize the polarization information or assume that the target polarization is known.

  • PDF

A Study on the Radar Reflectivity-Snowfall Rate Relation for Yeongdong Heavy Snowfall Events (영동 대설사례의 레이더 강설강도 추정 관계식에 관한 연구)

  • Jung, Sueng-Pil;Kwon, Tae-Yong;Park, Jun-Young;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.509-522
    • /
    • 2016
  • Heavy snowfall events have occurred frequently in the Yeongdong region but understanding of these events have trouble in lack of snowfall observation in this region because it is composed of complex topography like the "Taebaek mountains" and the "East sea". These problems can be solved by quantitative precipitation estimation technique using remote sensing such as radar, satellite, etc. Two radars which are able to cover over Yeondong region were installed at Gangneung (GNG) and Gwangdeoksan (GDK). This study uses radar and water equivalent of snow cover to investigate the characteristics of radar echoes and the $Z_e-R$ relations associated with the 10 Yeongdong heavy snowfall events during the last 5 years (2010~2014). It was found that the heights which the probability of detection (POD) of snow detection by GNG radar is more than 80% are 3,000 m and 1,500 m in convective cloud and stratiform cloud, respectively. The vertical gradient of radar reflectivity is less decreased in convective cloud than stratiform cloud. However, POD by GDK radar are lower than 80% at all layers because the majority of Yeondong observational stations are more than 100 km away from GDK radar site. Furthermore, we examined $Z_e-R$ relation from the 10 events using GNG radar and compared the "a" and "b" obtained from these examinations at Sokcho (SC) and Daegwallyeong (DG). These "a" and "b" are estimated from radar echo at 500 m (SC) and 1,500 m (DG). The values of "a" differ in their stations such as SC and DG are 30~116 and 6~39, respectively. But "b" is 0.4~1.7 irrespective of stations. Moreover, the value of "a" increased with surface air temperature. Therefore, quantitative precipitation estimation in heavy snowfall events by radar echo using fixed "a" and "b" is difficult because these values changed according to those precipitation characteristics.

Vital Sign Detection in a Noisy Environment by Undesirable Micro-Motion (원하지 않는 작은 동작에 의한 잡음 환경 내 생체신호 탐지 기법)

  • Choi, In-Oh;Kim, Min;Choi, Jea-Ho;Park, Jeong-Ki;Kim, Kyung-Tae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.5
    • /
    • pp.418-426
    • /
    • 2019
  • Recently, many studies on vital sign detection using a radar sensor related to Internet of Things(IoT) smart home systems have been conducted. Because vital signs such as respiration and cardiac rates generally cause micro-motions in the chest or back, the phase of the received echo signal from a target fluctuates according to the micro-motion. Therefore, vital signs are usually detected via spectral analysis of the phase. However, the probability of false alarms in cardiac rate detection increases as a result of various problems in the measurement environment, such as very weak phase fluctuations caused by the cardiac rate. Therefore, this study analyzes the difficulties of vital sign detection and proposes an efficient vital sign detection algorithm consisting of four main stages: 1) phase decomposition, 2) phase differentiation and filtering, 3) vital sign detection, and 4) reduction of the probability of false alarm. Experimental results using impulse-radio ultra-wideband radar show that the proposed algorithm is very efficient in terms of computation and accuracy.

Multipath Ghosts in Through-the-Wall Radar Imaging: Challenges and Solutions

  • Abdalla, Abdi T.;Alkhodary, Mohammad T.;Muqaibel, Ali H.
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.376-388
    • /
    • 2018
  • In through-the-wall radar imaging (TWRI), the presence of front and side walls causes multipath propagation, which creates fake targets called multipath ghosts. They populate the scene and reduce the probability of correct target detection, classification, and localization. In modern TWRI, specular multipath exploitation has received considerable attention for reducing the effects of multipath ghosts. However, this exploitation is challenged by the requirements of the reflecting geometry, which is not always available. Currently, the demand for a high radar image resolution dictates the use of a large aperture and wide bandwidth. This results in a large amount of data. To tackle this problem, compressive sensing (CS) is applied to TWRI. With CS, only a fraction of the data are used to produce a high-quality image, provided that the scene is sparse. However, owing to multipath ghosts, the scene sparsity is highly deteriorated; hence, the performance of the CS algorithms is compromised. This paper presents and discusses the adverse effects of multipath ghosts in TWRI. It describes the physical formation of ghosts, their challenges, and existing suppression techniques.

A study on intra-pulse modulation recognition using fearture parameters (특징인자를 활용한 펄스 내 변조 형태 식별방법에 관한 연구)

  • Yu, KiHun;Han, JinWoo;Park, ByungKoo;Lee, DongWon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.754-756
    • /
    • 2013
  • The modern Electronic Warfare Receivers are required to the current radar technologies like the Low Probability of Intercept(LPI) radars to avoid detection. LPI radars have features of intra-pulse modulation differ from existing radar signals. This features require counterworks such as signal confirmation and identification. Hence this paper presents a study on intra-pulse modulation recognition. The proposed method automatically recognizes intra-pulse modulation types such as LFM and NLFM using classifiers extracted from the features of each intra-pulse modulation. Several simulations are also conducted and the simulation results indicate the performance of the given method.

  • PDF

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

A Study on Accuracy Improvement for Range and Velocity Estimates in a FM-CW Radar (FM-CW 레이다에서의 거리 및 속도 추정 정확도 향상에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1752-1758
    • /
    • 2010
  • A FM-CW radar is used for the various purposes as a remote sensing device since it has the advantages of the relatively simple implementation and the low probability of signal interception. A FM-CW radar uses the same frequency modulated continuous wave for both transmission and demodulation. Therefore, the received beat frequency represents the range and Doppler information of targets. However, using the conventional FFT method, the degree of accuracy and resolution in the spectrum estimation can be seriously degraded in the detection and tracking of fast moving targets because of the short dwell time. Therefore, in this paper, the model parameter estimation methods called as an autoregressive method is applied to overcome these problems and showed that the improved accuracy and resolution can be obtained for the target range and velocity estimation.