• Title/Summary/Keyword: Radar Cross Section

Search Result 247, Processing Time 0.035 seconds

An Optimal Aerodynamic and RCS Design of a Cruise Missile (공력 및 RCS 해석 기반의 순항 유도탄 최적설계)

  • Yang, Byeong-Ju;Song, Dong-Gun;Kang, Yong-Seong;Jo, Je-Hyeon;Je, Sang-Eon;Kim, Byeong-Kwan;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.479-488
    • /
    • 2019
  • A cruise missile uses wings and a jet engine like an airplane to reach the target after cruising a considerable distance. An integrated design of a cruise missile based on radar cross section (RCS) reduction and enhanced aerodynamic performance is indispensable, since it must be able to fly long-distance at subsonic speed without being detected by enemy radar. In this study, we designed a Taurus-type cruise missile and analyzed its RCS and aerodynamic characteristics using the physical optics (PO) technique and the Navier-Stokes CFD code. As a result, we obtained the optimal shape of cruise missile with improved aerodynamic performance and reduced RCS.

Altitude Error Analysis of Helicopter-Borne FMCW Radar Altimeter (헬기 탑재 레이다 고도계 신호 수집 및 오차 분석)

  • Jung, Jung-Soo;Lee, Ho-Jun;Kwag, Young-Kil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.2
    • /
    • pp.258-261
    • /
    • 2012
  • Helicopter-borne FMCW radar altimeter obtains the altitude information using the beat frequency between the transmitted and reflected signal from the nadir direction. However, the altitude error may exist when the strong echoes are received from the large RCS at the off-nadir direction because of the wide beamwidth of the altimeter antenna. In this paper, in order to investigate the effect of the altitude error due to the large RCS around the off-nadir direction, the reflected signals were measured by using the corner reflectors displaced on the several reference ground positions, and the acquired signals were analyzed and compared in the spectral domain. The analysis results can be used for the improvement of the altitude accuracy in the radar altimeter.

LFM Radar Implemented in SDR Architecture (SDR 기반의 LFM 레이다 설계 및 구현)

  • Yoon, Jae-Hyuk;Yoo, Seung-Oh;Lee, Dong-Ju;Ye, Sung-Hyuck
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.308-315
    • /
    • 2018
  • In this paper, we present the basic design results for high-resolution radar development at S-band frequency that can precisely measure the miss distance between two targets. The basic system requirement is proposed for the design of a 3.5 GHz linear frequency-modulated (LFM) radar with maximum detection distance and distance resolution of 2 km and 1 m, respectively, and the specifications of each module are determined using the radar equation. Our calculations revealed a signal-to-noise ratio ${\geq}30dB$ with a bandwidth of 150 MHz, transmission power of 43 dBm for the power amplifier, gain of 26 dBi for the antenna, noise figure of 8 dB, and radar cross-section of $1m^2$ at a target distance of 2 km from the radar. Based on the calculation results and the theory and method of LFM radar design, the hardware was designed using software defined radar technology. The results of the subsequent field test are presented that prove that the designed radar system satisfies the requirements.

A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm (Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구)

  • Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • In this paper, we introduce a sparse recovery algorithm applied to a radar signal model, based on the compressive sensing(CS), for the formulation of the radar signatures, such as high-resolution range profile(HRRP) and ISAR(Inverse Synthetic Aperture Radar) image. When there exits missing data in observed RCS data samples, we cannot obtain correct high-resolution radar signatures with the traditional IDFT(Inverse Discrete Fourier Transform) method. However, high-resolution radar signatures using the sparse recovery algorithm can be successfully recovered in the presence of data missing and qualities of the recovered radar signatures are nearly comparable to those of radar signatures using a complete RCS data without missing data. Therefore, the results show that the sparse recovery algorithm rather than the DFT method can be suitably applied for the reconstruction of high-resolution radar signatures, although we collect incomplete RCS data due to unwanted interferences or jamming signals.

Drone Detection with Chirp-Pulse Radar Based on Target Fluctuation Models

  • Kim, Byung-Kwan;Park, Junhyeong;Park, Seong-Jin;Kim, Tae-Wan;Jung, Dae-Hwan;Kim, Do-Hoon;Kim, Taihyung;Park, Seong-Ook
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.188-196
    • /
    • 2018
  • This paper presents a pulse radar system to detect drones based on a target fluctuation model, specifically the Swerling target model. Because drones are small atypical objects and are mainly composed of non-conducting materials, their radar cross-section value is low and fluctuating. Therefore, determining the target fluctuation model and applying a proper integration method are important. The proposed system is herein experimentally verified and the results are discussed. A prototype design of the pulse radar system is based on radar equations. It adopts three different pulse modes and a coherent pulse integration to ensure a high signal-to-noise ratio. Outdoor measurements are performed with a prototype radar system to detect Doppler frequencies from both the drone frame and blades. The results indicate that the drone frame and blades are detected within an instrumental maximum range. Additionally, the results show that the drone's frame and blades are close to the Swerling 3 and 4 target models, respectively. By the analysis of the Swerling target models, proper integration methods for detecting drones are verified and can thus contribute to increasing in detectability.

The Performance Analysis of an Airborne Radar Altimeter based on Simultaneously Acquired LiDAR Data (비행 시험을 통한 레이더 전파고도계 특성 분석)

  • Yoon, Jongsuk;Kwak, Hee Jun;Kim, Yoon Hyoung;Shin, Young Jong;Yoo, Ki Jeong;Yu, Myeong Jong
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.81-94
    • /
    • 2013
  • The Radar altimeter transmits radio signals to the surface, receives the backscattered signals and measures the distance between the airplane and the nadir surface. The measurements of radar altimeter are affected by various factors on the surface below the aircraft. This study performed flight campaigns in June 2012 and acquired raw data from radar altimeter, LiDAR and other sensors. Based on the LiDAR DSM (Digital Surface Model) as a reference data, the characteristics of radar altimeter were analyzed in the respect of range and surface area affecting on the receiving power of the radar altimeter. Consequently, the radar altimeter was strongly affected by the surface area within beam width and reflectivity related to RCS (Radar Cross Section) rather than range.

A Study on the Design and Implementation of Simulated Signal Generator for VHF Radar with High Interference and Immunity Characteristics (간섭신호 내성 및 격리도 특성이 우수한 초단파 레이다용 모의신호 발생장치의 설계 및 구현에 대한 연구)

  • Kim, Ki-Jung;Lee, Sung-Je;Jang, Youn-Hui
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.27-32
    • /
    • 2019
  • This study describes the design and implementation of a simulated signal generator to demonstrate the performance of VHF band radar for the detection of small targets in RCS(Radar Cross Section). The transmission and reception antenna beam widths used in the simulated signal generating apparatus may be large, which may cause problems in the degree of isolation. Interference signal immunity and isolation characteristics are improved by considering operating conditions of VHF radar to solve isolation of antennas. Simulated signal generator performs the following: VHF radar transmission and reception correction, simulation signal generation, target Doppler, RCS and distance simulation, remote control, and GPS clock synchronization function. After the fabrication of the simulated signal generator, the main characteristics, such as the output characteristics and the reflection signal simulations, were tested. When the microwave radar assembly is completed in the future, it will be utilized for the performance evaluation of VHF radar.

Design of a Multilayer Radar Absorbing Structure Based on Particle Swarm Optimization Algorithm (입자 군집 최적화(PSO) 알고리즘 기반 다층 레이더 흡수 구조체 설계)

  • Choi, Young-Doo;Han, Min-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.367-379
    • /
    • 2022
  • In this paper, a multilayer radar absorbing structure was designed using the Particle Swarm Optimization (PSO) algorithm, and the characteristics of the multilayer radar absorbing structure were analyzed. It was shown that design values can be derived quickly and accurately by applying PSO to the design of a multilayer radar absorbing structure, and it is also shown that the optimal multilayer radar absorbing structure can be designed especially for an oblique incident. In addition, it was shown that the optimal value that meets the performance requirements can be determined even in a combination of various design parameters. It is presented through a comprehensive flowchart including the equations and detailed descriptions of all variables for each step. From the results of this paper, it is possible to omit complex and many calculations for designing a multilayer radar absorbing structure, and it is possible to use various composite materials. It can be utilized in the design and development of multilayer radar absorbing structures.

A Study on the X-Band Active Radar Reflector for safety at the Sea (해상 안전을 위한 X밴드 능동형 레이더 반사기에 관한 연구)

  • 정종혁;김남호;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.4
    • /
    • pp.849-858
    • /
    • 1999
  • There are several improved designs of passive radar reflector available, but their performance is ultimately limited by the cross-section area and this is governed by the size of the buoy and the acceptable windage. Therefore it is needed to investigate the low-cost, low power, a active device that can be improve the reliability of response. Active Radar Reflector(AAR) consists of a microwave amplifier with separate receive and transmit antennas. It is a device which automatically transmits a signal in response to an interrogating signal received. It was intended to improve the consistency of the radar return from the buoy and the small craft, particularly in poor sea conditions. And it directly improves safety of navigation at sea.

  • PDF

Design Plan of Signal Processing Structure for Real-Time Application in Drone Detection Radar (실시간 적용을 위한 드론 탐지 레이다용 신호처리 구조 설계 방안)

  • Kong, Young-Joo;Sohn, Sung-Hwan;Hyun, Jun-Seok;Yoo, Dong-Gil;Cho, In-Cheol
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.31-36
    • /
    • 2022
  • Recently, drones are being used in various fields, and drone technology is also developing. The risks of drones are increasing, then technology to detect drones is important. However, it is extremely difficult to detect and recognize drones due to the low level radar cross section of the commercial drones. In this paper, a signal processor structure that was mounted the miniaturized and light-weighted was designed. in order to process large amounts of data in real time, parallel processing was performed for each channel and an algorithm was applied to shorten the operation time in each step. As a test of verifing the detection performance through test, it was confirmed that the structure design works in real time.