• Title/Summary/Keyword: Radar Clutter

Search Result 171, Processing Time 0.025 seconds

Analysis of Quality Control Technique Characteristics on Single Polarization Radar Data (단일편파 레이더자료 품질관리기술 특성 분석)

  • Park, Sora;Kim, Heon-Ae;Cha, Joo Wan;Park, Jong-Seo;Han, Hye-Young
    • Atmosphere
    • /
    • v.24 no.1
    • /
    • pp.77-87
    • /
    • 2014
  • The radar reflectivity is significantly affected by ground clutter, beam blockage, anomalous propagation (AP), birds, insects, chaff, etc. The quality of radar reflectivity is very important in quantitative precipitation estimation. Therefore, Weather Radar Center (WRC) of Korea Meteorological Administration (KMA) employed two quality control algorithms: 1) Open Radar Product Generator (ORPG) and 2) fuzzy quality control algorithm to improve quality of radar reflectivity. In this study, an occurrence of AP echoes and the performance of both quality control algorithms are investigated. Consequently, AP echoes frequently occur during the spring and fall seasons. Moreover, while the ORPG QC algorithm has the merit of removing non-precipitation echoes, such as AP echoes, it also removes weak rain echoes and snow echoes. In contrast, the fuzzy QC algorithm has the advantage of preserving snow echoes and weak rain echoes, but it eliminates the partial area of the contaminated echo, including the AP echoes.

A Study on Radar Image Simulation for Ocean Waves Using Radar Received Power (파랑에 관한 레이더 이미지 시뮬레이션을 위한 레이더 수신 출력 도입 기법 연구)

  • Park, Jun-Soo;Yang, Young-Jun;Park, Seung-Gun;Kwon, Sun-Hong
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • This study presents a modified scheme for the radar image simulation of sea waves. A simulated radar image was obtained by taking into account the dot product of the directed vector from the radar and the normal vector of the sea surface. Moreover, to calculate the radar image, we used the radar received power and radar cross section. To demonstrate the effectiveness of the proposed scheme, the wave spectrum from field data was utilized to obtain the simulated sea waves. The radar image was simulated using numerically generated sea waves. The wave statistics from the simulation agrees comparatively with those of the original field data acquired by real radar measurements.

The Development of the Data Acquisition & Analysis System for Multi-Function Radar (다기능레이더 데이터 획득 및 분석 장치 개발)

  • Song, Jun-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.106-113
    • /
    • 2011
  • This paper describes Data Acquisition & Analysis System(DAS) for analysis of the multi-function radar. There are various information - beam probing data, clutter map data, plot data, target tracking data, RT tracking data, radar signal processing data, interface data - this device saves. The most important thing of data analysis is that a researcher gets a view of the whole data. The DAS intergrates with all of the data and provides overall information on the time matters occur. This is very useful advantage for approaching the matter easily. System algorithms of multi-function radar are improved by using this advantage. As a result of, range blank region have fallen about 72% and it is able to keep track in jammer environment.

Development of Virtual Target Signal Generator for Verifying the Shipborne Tracking Radar Performance (함정용 추적레이더 성능 검증을 위한 모의표적신호발생장치 개발)

  • Yi, Hui-Min;Son, Jae-Hyun;Na, Young-Jin;Kim, Dong-Hawn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The virtual target signal generator was developed to verify the shipborne tracking radar performance. It was used to DRFM(Digital RF Memory) method to generate the virtual moving targets. The target signal includes Doppler shift and RCS according to the target motion. And the signal generator can make jamming signal and clutter to test shipborne radar performance at real environmental condition. This paper described the functional diagram and the hardware configuration items to meet the test requirements for the tracking radar. And it showed the critical design points for the sub-systems. The signal generator which was developed in this paper shared the operational information of the radar with the radar command and control part. To test the frequency agility of the radar, it had the local oscillator which could do high speed frequency switching according to radar information. By communicating between the signal generator and the radar command and control part, the local oscillator of signal generator could be controlled every pulse. It reduced the instantaneous bandwidth of signal generator and minimized the spurious. So it lowered the probability of generating wrong targets.

Accuracy Evaluation of Composite Hybrid Surface Rainfall (HSR) Using KMA Weather Radar Network (기상청 기상레이더 관측망을 이용한 합성 하이브리드 고도면 강우량(HSR)의 정확도 검증)

  • Lyu, Geunsu;Jung, Sung-Hwa;Oh, Young-a;Park, Hong-Mok;Lee, GyuWon
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.496-510
    • /
    • 2017
  • This study presents a new nationwide quantitative precipitation estimation (QPE) based on the hybrid surface rainfall (HSR) technique using the weather radar network of Korea Meteorological Administration (KMA). This new nationwide HSR is characterized by the synthesis of reflectivity at the hybrid surface that is not affected by ground clutter, beam blockage, non-meteorological echoes, and bright band. The nationwide HSR is classified into static (STATIC) and dynamic HSR (DYNAMIC) mosaic depending on employing a quality control process, which is based on the fuzzy logic approach for single-polarization radar and the spatial texture technique for dual-polarization radar. The STATIC and DYNAMIC were evaluated by comparing with official and operational radar rainfall mosaic (MOSAIC) of KMA for 10 rainfall events from May to October 2014. The correlation coefficients within the block region of STATIC, DYNAMIC and MOSAIC are 0.52, 0.78, and 0.69, respectively, and their mean relative errors are 34.08, 30.08, and 40.71%.

A Study on Analysis of Beat Spectra in a Radar System (레이다 시스템에서의 비트 스펙트럼 분석에 관한 연구)

  • Lee, Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2187-2193
    • /
    • 2010
  • A specific radar system can be implemented more easily using the frequency modulated continuous wave comparing with the pulse Doppler radar. It also has the advantage of LPI (low probability of interception) because of the low power and wide bandwidth characteristics. These radars are usually used to cover the short range area and to obtain the high resolution measurements of the target range and velocity information. The transmitted waveform is used in the mixer to demodulate the received echo signal and the resulting beat signal can be obtained. This beat signal is analyzed using the FFT method for the purpose of clutter removal, detection of a target, extraction of velocity and range information, etc. However, for the case of short signal acquisition time, this FFT method can cause the serious leakage effect which disables the detection of weaker echo signals masked by strong side lobes of the clutter. Therefore, in this paper, the weighting window method is analyzed to suppress the strong side lobes while maintaining the proper main lobe width. Also, the results of FFT beat spectrum analysis are shown under various environments.

A Programmable Doppler Processor Using a Multiple-DSP Board (다중 DSP 보드를 이용한 프로그램 가능한 도플러 처리기)

  • 신현익;김환우
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.333-340
    • /
    • 2003
  • Doppler processing is the heart of pulsed Doppler radar. It gives a clutter elimination and coherent integration. With the improvement of digital signal processors (DPSs), the implementation using them is more widely used in radar systems. Generally, so as for Doppler processor to process the input data in real time, a parallel processing concept using multiple DSPs should be used. This paper implements a programmable Doppler processor, which consists of MTI filter, DFB and square-law detector, using 8 ADSP21060s. Formulating the distribution time of the input data, the transfer time of the output data and the time required to compute each algorithm, it estimates total processing time and the number of required DSP. Finally, using the TSG that provides radar control pulses and simulated target signals, performances of the implemented Doppler processor are evaluated.

Analysis of Detection Method for the Weather Change in a Local Weather Radar (국지적 기상 레이다에서의 기상 변화 탐지 방법 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.10
    • /
    • pp.1345-1352
    • /
    • 2021
  • Most of weather radar systems are used to monitor the whole weather situation for the very wide and medium-to-long range area. However, as the likelihood of occurrence of the local weather hazards is increased in recent days, it is very important to detect these wether phenomena with a local weather radar. For this purpose, it is necessary to detect the fast varying low altitude weather conditions and the effect of the ground surface clutter is more evident. Therefore, in this paper, the newly suggested method is explained and analyzed for detection of weather hazards such as the gust and wind shear using the fluctuation of wind velocities and the gradient of wind velocities among range cells. It is shown that the suggested method can be used efficiently in the future for faster detection of weather change through the simple algorithm implementation and also the effect of the ground clutter can be minimized in the detection procedure.

Implementation of automatic gain control circuit for the gain control of receiving stage in pulse doppler radar (펄스 도플러 레이다의 수신단 이득 제어를 위한 자동 이득 조절 장치의 구현)

  • 김세영;양진모;김선주;전병태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.2
    • /
    • pp.10-20
    • /
    • 1997
  • This paper describes the design, the manufacture and the development of th eautomatic gain control unit which ajdusts the gain of IF processor in the high sensitive & multifunctional receiver unit (HMR) for pulse doppler radar system. Accodording to the effective distnce of target, radar cross section, and a lot of external environments (such as clutter), the receiving stage of RADAR system often deviates from dynamic range. To solve this kind o fproblem, continuous/pulse wave AGC are realized, make it possible to control the gain characteristics of receiver stably, and can increase dynamic range linearly by adjusting the gain slope of receiver which is limited by 1-dB gain compression point. In this study, AGC unit is designed to regulate the total gain of receiver by using te analog feedback theory. It also has rapid enough response to process pulse signal. This study presents the gain control method of IF, the real manufacture technique (the package-type components) and the measurement performance of AGC.

  • PDF

EXAMINATION OF SPATIAL INTEGRATION METHOD FOR EXTRACTING THE RCS OF A CALIBRATION TARGET FROM SAR IMAGES

  • Na, Jae-Ho;Oh, Yi-Sok
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.254-257
    • /
    • 2007
  • This paper presents an examination of the spatial integration method for extracting the RCS of a trihedral corner reflector from SAR images for SAR external calibration. An exact external radiometric calibration technique is required for extracting an exact calibration constant. Therefore, we examine the accuracy of the spatial integration method, which is commonly used for the SAR external radiometric calibration. At first, an SAR image for a trihedral corner reflector is simulated with a high-resolution SAR impulse response with a known theoretical RCS of the reflector, and a background clutter image for the high resolution SAR system is also generated. Then, a SAR image in a high resolution is generated for a trihedral comer reflector located on a background clutter by superposition of the two SAR images. The radar cross section of a trihedral corner reflector in the SAR image is retrieved by integrating the radar signals of the pixels adjacent to the reflector for various size of the integration area. By comparison of the measured RCS by the integration method and the theoretical RCS of the reflector, the effect of the size of the integration area on the extraction of the calibration constant is examined.

  • PDF