• Title/Summary/Keyword: Radar Clustering

Search Result 46, Processing Time 0.025 seconds

3D Radar Objects Tracking and Reflectivity Profiling

  • Kim, Yong Hyun;Lee, Hansoo;Kim, Sungshin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.4
    • /
    • pp.263-269
    • /
    • 2012
  • The ability to characterize feature objects from radar readings is often limited by simply looking at their still frame reflectivity, differential reflectivity and differential phase data. In many cases, time-series study of these objects' reflectivity profile is required to properly characterize features objects of interest. This paper introduces a novel technique to automatically track multiple 3D radar structures in C,S-band in real-time using Doppler radar and profile their characteristic reflectivity distribution in time series. The extraction of reflectivity profile from different radar cluster structures is done in three stages: 1. static frame (zone-linkage) clustering, 2. dynamic frame (evolution-linkage) clustering and 3. characterization of clusters through time series profile of reflectivity distribution. The two clustering schemes proposed here are applied on composite multi-layers CAPPI (Constant Altitude Plan Position Indicator) radar data which covers altitude range of 0.25 to 10 km and an area spanning over hundreds of thousands $km^2$. Discrete numerical simulations show the validity of the proposed technique and that fast and accurate profiling of time series reflectivity distribution for deformable 3D radar structures is achievable.

Repeated K-means Clustering Algorithm For Radar Sorting (레이더 군집화를 위한 반복 K-means 클러스터링 알고리즘)

  • Dong Hyun ParK;Dong-ho Seo;Jee-hyeon Baek;Won-jin Lee;Dong Eui Chang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.384-391
    • /
    • 2023
  • In modern electronic warfare, a number of radar emitters are in operation, causing radar receivers to receive high-density signal pulses that occur simultaneously. To analyze the radar signals more accurately and identify enemies, the sorting process of high-density radar signals is very important before analysis. Recently, machine learning algorithms, specifically K-means clustering, are the subject of research aimed at improving the accuracy of radar signal sorting. One of the challenges faced by these studies is that the clustering results can vary depending on how the initial points are selected and how many clusters number are set. This paper introduces a repeated K-means clustering algorithm that aims to accurately cluster all data by identifying and addressing false clusters in the radar sorting problem. To verify the performance of the proposed algorithm, experiments are conducted by applying it to simulated signals that are generated by a signal generator.

Radar Pulse Clustering using Kernel Density Window (커널 밀도 윈도우를 이용한 레이더 펄스 클러스터링)

  • Lee, Dong-Weon;Han, Jin-Woo;Lee, Won-Don
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.973-974
    • /
    • 2008
  • As radar signal environments become denser and more complex, the capability of high-speed and accurate signal analysis is required for ES(Electronic warfare Support) system to identify individual radar signals at real-time. In this paper, we propose the new novel clustering algorithm of radar pulses to alleviate the load of signal analysis process and support reliable analysis. The proposed algorithm uses KDE(Kernel Density Estimation) and its CDF(Cumulative Distribution Function) to compose clusters considering the distribution characteristics of pulses. Simulation results show the good performance of the proposed clustering algorithm in clustering and classifying the emitters.

  • PDF

Separation of Adjacent Targets using Range-Doppler Clustering Method (거리-도플러 클러스터링 방법을 사용한 인접한 표적들의 분리)

  • Kong, Young-Joo;Woo, Seon-Keol;Park, Sung-Ho;Ryu, Seong-Hyun;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.67-73
    • /
    • 2020
  • The clustering algorithm is the grouping of similar objects. In radar system, it is mainly used to group adjacent hits using the CFAR algorithm results. However it is difficult to separate adjacent targets by a general clustering method. In this paper, we describe how to separate adjacent targets using double clustering method. First, we execute a range direction clustering. And we find the inflection point and separate it. Next, we execute a doppler direction clustering using range clustering results. This method makes the computation time less change even if the target increases by range-doppler clustering respectively.

A Clustering Technique of Radar Signals using 4-Dimensional Features (4차원 특징 벡터에 의한 레이더 신호 클러스터링 기법)

  • Lee, Jong-Tae;Ju, Young-Kwan;Kim, Gwan-Tae;Jeon, Joong-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.137-144
    • /
    • 2014
  • The Electronic Support System collects and analyzes the received radar signals in order to cope with the electronic attack in real-time. The radar-pulse clustering system classifies the radar signals that are considered to be emitted by a single source. This paper proposed a radar-pulse clustering algorithm based on four kinds of features: the direction, frequency, pulse width, and the difference of arrival time between two successive pulses. The experiment results show that the proposing algorithm could trace the moving emitter and classify the timely separated signals into different classes.

Range-Doppler Clustering of Radar Data for Detecting Moving Objects (이동물체 탐지를 위한 레이다 데이터의 거리-도플러 클러스터링 기법)

  • Kim, Seongjoon;Yang, Dongwon;Jung, Younghun;Kim, Sujin;Yoon, Joohong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.810-820
    • /
    • 2014
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance are reported. In near field, several hits per an object are generated after signal processing of Radar data. Hence, clustering is an essential technique to estimate their shapes and positions precisely. This paper proposes a method of grouping hits in range-doppler domains into clusters which represent each object, according to the pre-defined rules. The rules are based on the perceptual cues to separate hits by object. The morphological connectedness between hits and the characteristics of SNR distribution of hits are adopted as the perceptual cues for clustering. In various simulations for the performance assessment, the proposed method yielded more effective performance than other techniques.

Adjustment of the Mean Field Rainfall Bias by Clustering Technique (레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정)

  • Kim, Young-Il;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.659-671
    • /
    • 2009
  • Fuzzy c-means clustering technique is applied to improve the accuracy of G/R ratio used for rainfall estimation by radar reflectivity. G/R ratio is computed by the ground rainfall records at AWS(Automatic Weather System) sites to the radar estimated rainfall from the reflectivity of Kwangduck Mt. radar station with 100km effective range. G/R ratio is calculated by two methods: the first one uses a single G/R ratio for the entire effective range and the other two different G/R ratio for two regions that is formed by clustering analysis, and absolute relative error and root mean squared error are employed for evaluating the accuracy of radar rainfall estimation from two G/R ratios. As a result, the radar rainfall estimated by two different G/R ratio from clustering analysis is more accurate than that by a single G/R ratio for the entire range.

A Study on Fuzzy Logic based Clustering Method for Radar Data Analysis (레이더 데이터 분석을 위한 Fuzzy Logic 기반 클러스터링 기법에 관한 연구)

  • Lee, Hansoo;Kim, Eun Kyeong;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.3
    • /
    • pp.217-222
    • /
    • 2015
  • Clustering is one of important data mining techniques known as exploratory data analysis and is being applied in various engineering and scientific fields such as pattern recognition, remote sensing, and so on. The method organizes data by abstracting underlying structure either as a grouping of individuals or as a hierarchy of groups. Weather radar observes atmospheric objects by utilizing reflected signals and stores observed data in corresponding coordinate. To analyze the radar data, it is needed to be separately organized precipitation and non-precipitation echo based on similarities. Thus, this paper studies to apply clustering method to radar data. In addition, in order to solve the problem when precipitation echo locates close to non-precipitation echo, fuzzy logic based clustering method which can consider both distance and other properties such as reflectivity and Doppler velocity is suggested in this paper. By using actual cases, the suggested clustering method derives better results than previous method in near-located precipitation and non-precipitation echo case.

Object Extraction Technique Adequate for Radial Shape's RADAR Signal Structure (방사선 레이다 신호 구조에 적합한 물체 추적 기법)

  • 김도현;박은경;차의영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.536-546
    • /
    • 2003
  • We propose an object extraction technique adequate for the radial shape's radar signal structure for the purpose of implementing ARPA(Automatic Radar Plotting Aid) installed in the vessel. The radar signal data are processed by interpolation and accumulation to acquire a qualified image. The objects of the radar image have characteristics of having different shape and size as it gets far from the center, and it is not adequate for clustering generally. Therefore, this study designs a new vigilance distance model of elliptical shape and adopts this model in the ART2 neural network. We prove that the proposed clustering method makes it possible to extract objects adaptively and to separate the connected objects effectively.

Design of Meteorological Radar Pattern Classifier Using Clustering-based RBFNNs : Comparative Studies and Analysis (클러스터링 기반 RBFNNs를 이용한 기상레이더 패턴분류기 설계 : 비교 연구 및 해석)

  • Choi, Woo-Yong;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.536-541
    • /
    • 2014
  • Data through meteorological radar includes ground echo, sea-clutter echo, anomalous propagation echo, clear echo and so on. Each echo is a kind of non-precipitation echoes and the characteristic of individual echoes is analyzed in order to identify with non-precipitation. Meteorological radar data is analyzed through pre-processing procedure because the data is given as big data. In this study, echo pattern classifier is designed to distinguish non-precipitation echoes from precipitation echo in meteorological radar data using RBFNNs and echo judgement module. Output performance is compared and analyzed by using both HCM clustering-based RBFNNs and FCM clustering-based RBFNNs.