• Title/Summary/Keyword: Radar

Search Result 4,030, Processing Time 0.027 seconds

Differential Choice of Radar Beam Scheduling Algorithm According to Radar Load Status (레이더의 부하 상태에 따른 빔 스케줄링 알고리즘의 선택적 적용)

  • Roh, Ji-Eun;Kim, Dong-Hwan;Kim, Seon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.322-333
    • /
    • 2012
  • AESA radar is able to instantaneously and adaptively position and control the beam, and such adaptive beam pointing of AESA radar enables to remarkably improve the multi-mission capability. For this reason, Radar Resource Management(RRM) becomes new challenging issue. RRM is a technique efficiently allocating finite resources, such as energy and time to each task in an optimal and intelligent way. Especially radar beam scheduling is the most critical component for the success of RRM. In this paper, we proposed a rule-based scheduling algorithm and Simulated Annealing(SA) based scheduling algorithm, which are alternatively selected and applied to beam scheduler according radar load status in real-time. The performance of the proposed algorithm was evaluated on the multi-function radar scenario. As a result, we showed that our proposed algorithm can process a lot of beams at the right time with real time capability, compared with applying only rule-based scheduling algorithm. Additionally, we showed that the proposed algorithm can save scheduling time remarkably, compared with applying only SA-based scheduling algorithm.

Development of Virtual Target Signal Generator for Verifying the Shipborne Tracking Radar Performance (함정용 추적레이더 성능 검증을 위한 모의표적신호발생장치 개발)

  • Yi, Hui-Min;Son, Jae-Hyun;Na, Young-Jin;Kim, Dong-Hawn
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • The virtual target signal generator was developed to verify the shipborne tracking radar performance. It was used to DRFM(Digital RF Memory) method to generate the virtual moving targets. The target signal includes Doppler shift and RCS according to the target motion. And the signal generator can make jamming signal and clutter to test shipborne radar performance at real environmental condition. This paper described the functional diagram and the hardware configuration items to meet the test requirements for the tracking radar. And it showed the critical design points for the sub-systems. The signal generator which was developed in this paper shared the operational information of the radar with the radar command and control part. To test the frequency agility of the radar, it had the local oscillator which could do high speed frequency switching according to radar information. By communicating between the signal generator and the radar command and control part, the local oscillator of signal generator could be controlled every pulse. It reduced the instantaneous bandwidth of signal generator and minimized the spurious. So it lowered the probability of generating wrong targets.

Elimination of Chaff Echoes in Reflectivity Composite from an Operational Weather Radar Network using Infrared Satellite Data (위성 적외영상 자료를 이용한 현업용 기상레이더 반사도 합성자료의 채프에코 제거)

  • Han, Hye-Young;Heo, Bok-Haeng;Jung, Sung-Hwa;Lee, GyuWon;You, Cheol-Hwan;Lee, Jong-Ho
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.285-300
    • /
    • 2011
  • To discriminate and eliminate chaff echoes in radar measurements, a new removal algorithm in two-dimensional reflectivity composite at the height of 1.5 km has been developed by using the brightness temperature($T_B$) obtained from MTSAT-1R. This algorithm utilizes the fact that chaffs are not appeared in infrared satellite data of MTSAT-1R, but detected in radar measurements due to their significant backscattering in the given radar wavelength. The algorithm is evaluated for three different situations: chaff only, chaff mixed with convective storms, and chaff covered with clouds. The algorithm shows excellent performance for the cases of chaff only and chaff mixed with convective storms. However, the performance of the algorithm significantly depends on the presence of clouds. Thus, the statistical analysis of $T_B$ is performed in order to optimize the monthly threshold.

DCT and DWT based Damaged Weather Radar Image Retrieval (DCT 및 DWT 기반의 손상된 기상레이더 영상 복원 기법)

  • Jang, Bong-Joo;Lim, Sanghun;Kim, Won;Noh, Huiseong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.153-162
    • /
    • 2017
  • Today, weather radar is used as a key tool for modern high-tech weather observations and forecasts, along with a wide variety of ground gauges and weather satellites. In this paper, we propose a frequency transform based weather radar image processing technique to improve the weather radar image damaged by beam blocking and clutter removal in order to minimize the uncertainty of the weather radar observation. In the proposed method, DCT based mean energy correction is performed to improve damage caused by beam shielding, and DWT based morphological image processing and high frequency cancellation are performed to improve damage caused by clutter removal. Experimental results show that the application of the proposed method to the damaged original weather radar image improves the quality of weather radar image adaptively to the weather echo feature around the damaged area. In addition, radar QPE calculated from the improved weather radar image was also qualitatively confirmed to be improved by the damage. In the future, we will develop quantitative evaluation scales through continuous research and develop an improved algorithm of the proposed method through numerical comparison.

The Study on Coordinate Transformation of the Tracking Radar in NARO Space Center (나로우주센터 추적레이더의 좌표 변환에 관한 연구)

  • Shin, Han-Seop;Choi, Jee-Hwan;Kim, Dae-Oh;Kim, Tae-Hyung
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.116-121
    • /
    • 2011
  • The tracking radar systems in NARO space center are used in order to acquire the TSPI (Time, Space, and Position Information) data of the launch vehicle. The tracking radar produce the measurements of tracked targets in the radar-centered coordinate system. When the tracking radar is in the Cartesian/Polar tracking mode, the state vector data is sent in radar-centered Cartesian/Polar coordinate system to RCC. RCC also send the slaving data in Test Range coordinate system to the tracking radar. So, the tracking radars have to transform the slaving data in Test Range coordinate system into in radar-centered coordinate system. In this study, we described the coordinate transformation between radar-centered coordinate system and Test Range coordinated system.

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Kim, Byoung-Soo;Kim, Kyoung-Jun;Yoon, Jung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.97-100
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 24 mid-sized sub-basins of the Han River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 16 sub-basins are partially covered by the radar leading incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. It is general that smaller sampling error can be expected when the number of clusters increases if the total area coverage remains the same. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

  • PDF

Design of 24 GHz Radar with Subspace-Based Digital Beam Forming for ACC Stop-and-Go System

  • Jeong, Seong-Hee;Oh, Jun-Nam;Lee, Kwae-Hi
    • ETRI Journal
    • /
    • v.32 no.5
    • /
    • pp.827-830
    • /
    • 2010
  • For an adaptive cruise control (ACC) stop-and-go system in automotive applications, three radar sensors are needed because two 24 GHz short range radars are used for object detection in an adjacent lane, and one 77 GHz long-range radar is used for object detection in the center lane. In this letter, we propose a single sensor-based 24 GHz radar with a detection capability of up to 150 m and ${\pm}30^{\circ}$ for an ACC stop-and-go system. The developed radar is highly integrated with a high gain patch antenna, four channel receivers with GaAs RF ICs, and back-end processing board with subspace based digital beam forming algorithm.

Case Study of the Precipitation System Occurred Around Cheongju Using Convective/Stratiform Radar Echo Classification Algorithm (레이더 반사도 유형분류 알고리즘을 이용한 청주 부근에서 관측된 강우시스템의 사례 분석)

  • Nam, Kyung-Yeub;Lee, Jeong-Seog;Nam, Jae-Cheol
    • Atmosphere
    • /
    • v.15 no.3
    • /
    • pp.155-165
    • /
    • 2005
  • The characteristics of six precipitation systems occurred around Cheongju in 2002 are analyzed after the convective/stratiform radar echo classification using radar reflectivity from the Meteorological Research Institute"s X-band Doppler weather radar. The Biggerstaff and Listemaa (2000) algorithm is applied for the classification and reveals a physical characteristics of the convective and stratiform rain diagnosed from the three-dimensional structure of the radar reflectivity. The area satisfying the vertical profile of radar reflectivity is well classified, while the area near the radar site and the topography-shielded area show a mis-classification. The seasonal characteristics of the precipitation system are also analyzed using the contoured frequency by altitude diagrams (CFADs). The heights of maximum reflectivity are 4 km and 5.5 km in spring and summer, respectively, and the vertical gradient of radar reflectivity from 1.5 km to the melting layer in spring is larger than in summer.

A study of 10.5 GHz band Doppler radar for non-contact type hydrometer (비접촉식 유속계를 위한 10.5 GHz 대역 도플러 레이더에 대한 연구)

  • Kim, Jin-Su;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.139-144
    • /
    • 2009
  • A Doppler radar is a radar using the doppler effect of the returned echoes from targets to measure their radial velocity. To be more specific the microwave signal sent by the radar antenna's directional beam is reflected toward the radar and compared in frequency, up or down from the original signal, allowing for the direct and highly accurate measurement of target velocity component in the direction of the beam. In this paper, we designed the doppler radar composed of 10.5 GHz band DROs(Dielectric Resonator Oscillator), $90^{\circ}C$ branch line coupler, single balanced mixer and $4{\times}4$ array antenna of high gain, high directivity, for non-contact type hydrometer. Fabricated Doppler radar can detect slow moving objects.

  • PDF

Measurement of Coastal Waves using Marine Radar (선박용 레이더를 이용한 연안파 계측)

  • Park, Jun Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.83-91
    • /
    • 2018
  • In this paper, usefulness of marine radar for water waves measurement in coastal waters is presented. We installed a marine radar to acquire radar images of water wave around light beacon at Jujeon in Ulsan. Also, a series of analysis procedures for obtaining the wave information from the acquired image is described with a schematic diagram. We compared analysis results of radar images with measurement values using wave height gauge at light beacon. In order to improve accuracy of analysis results, detailed water depth information is essential. In conclusion, in case of the use of radar for water waves measurement, it is shown that it is very necessary to increase the accuracy of measurement by consideration of the water depth in the dispersion relation of water waves.