• Title/Summary/Keyword: Rad4

Search Result 308, Processing Time 0.026 seconds

Characterization of RAD4 Homologous Gene from Coprinus cinereus (균류 Coprinus cinereus에서 DNA 회복에 관여하는 RAD4 유사유전자의 분리와 특성)

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.522-528
    • /
    • 2003
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the RAD4 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. In order to investigation whether the increase of transcripts by DNA damaging agent, transcripts levels were examined after treating the cells. The level of transcript did not increase by untraviolet light (UV). This result indicated that the RAD4 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the RAD4 homologous gene is essential for cell viability.

Functional Analysis of RAD4 Gene Required for Nucleotide Excision Repair of UV-induced DNA Damage in Saccharomyces cerevisiae

  • Park, Sang Dai;Park, In Soon
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.311-315
    • /
    • 2002
  • The RAD4 gene is essential for nucleotide excision repair in Saccharomyces cerevisiae. It has been known that the deduced amino acid sequence of Rad4 protein contains three DNA-dependent ATPase/helicase motifs. To determine the biochemical activities and functional role of RAD4 the Rad4 protein was expressed and purified. Immunoblot analysis showed a specific band of 21 kDa, which was well-matched with the size of open reading frame of the RAD4 gene. The purified Rad4 protein had no detectable helicase activity. However, the protein could interact with double stranded oligonucleotides, as judged by mobility shift assay. This result suggests that the Rad4 protein is a DNA binding protein.

Characterization of Excision Repair Genes Related to Damaged DNA Repair from Eukaryotic Cells

  • Choi, In-Soon;Jin, Yong-Hwan;Park, Sang-Dai
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. The insert DNA of the RAD4 homolog was contained 3.2 kb. Here, we report the partial cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 1.2 kb PvuII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The level of the transcript did not increase upon UV-irradiation, suggesting that the RAD4 homologous gene in C. cinereus is not UV-inducible.

  • PDF

Characterization of UV-damaged repair genes in cells

  • Choi, In-Soon
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • The RAD4 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. A yeast RAD4 gene has been previously isolated by functional complementation. In order to identify the RAD4 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD4 DNA, and then isolated homologous C. cinereus chromosome. Here, we report the cloning and characterization of fungus C. cinereus homolog of yeast RAD4 gene. Southern blot analysis confirmed that C. cinereus contains the sequence homologous DNA to RAD4 gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from C. cinereus cells was hybridized with the 3.4 kb BglII DNA fragment of the S. cerevisiae RAD4 gene, a 2.5 kb of transcript was detected. The isolated gene encodes a protein of 810 amino acids.

  • PDF

The Pathological Changes of Stomach in Experimental Rats following Single Irradiation of Supervoltage (고에너지 방사선으로 단일조사한 백서위의 병리조직학적 변화에 관한 연구)

  • Choi, Myung-Sun;Suh, Won-Hyuck
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.25-32
    • /
    • 1984
  • The pathological changes of stomach of the rat following 1,000 rad and 1,800 rad single exposure by Cobalt-60 has been made with 50 experimental rats. The dose of 1,000 rad and 1,800 rad single exposure were equivalent of biologic effect of 2,500 rad in 2 1/2 weeks and 6,000 rad in 6 weeks. Following single exposure, the groups of rat were terminated in 1, 2, 4, 8, 12 weeks intervals and the stomach were fixed to formalin solution immediatly after dissection. The pathological changes were as follows : 1. Following 1,000 rad single exposure, the stomach show only mild to moderate submucosal edema in 4,8,12 weeks group. 1 and 2 weeks group show no changes. 2. Following 1,800 rad single exposure, $32\%(8/25)$ of rats were dead by radiation effect and all other groups of stomach revealed variable pathological changes such as submucosal edema, squamous dysplasia, squamous papilloma as well as squamous cell carcinoma. 3. Optimal tolerance dose to the stomach was $4,500\~5,000$rad when irradiation given by supervoltage. The entire stomach was included within the irradiation field, the dose to the stomach should not exceed 6,000 rad. 4. In conclusion, the radiation injury to the stomach were more direct radiation effects to the gastric mucosa rather than secondary changes of radiation injured vessels.

  • PDF

RAD2 and PUF4 Regulate Nucleotide Metabolism Related Genes, HPT1 and URA3

  • Yu, Sung-Lim;Lim, Hyun-Sook;Kang, Mi-Sun;Kim, Mai Huynh;Kang, Dong-Chul;Lee, Sung-Keun
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.338-347
    • /
    • 2008
  • Yeast RAD2, a yeast homolog of human XPG gene, is an essential element of nucleotide excision repair (NER), and its deletion confers UV sensitivity and NER deficiency. 6-Azauracil (6AU) sensitivity of certain rad2 mutants revealed that RAD2 has transcription elongation function. However, the fundamental mechanism by which the rad2 mutations confer 6AU sensitivity was not clearly elucidated yet. Using an insertional mutagenesis, PUF4 gene encoding a yeast pumilio protein was identified as a deletion suppressor of rad2${\Delta}$ 6AU sensitivity. Microarray analysis followed by confirmatory RT-qPCR disclosed that RAD2 and PUF4 regulated expression of HPT1 and URA3. Overexpression of HPT1 and URA3 rescued the 6AU sensitivity of rad2${\Delta}$ and puf4${\Delta}$ mutants. These results indicate that 6AU sensitivity of rad2 mutants is in part ascribed to impaired expression regulation of genes in the nucleotide metabolism. Based on the results, the possible connection between impaired transcription elongation function of RAD2/XPG and Cockayne syndrome via PUF4 is discussed.

The Results of Radiation Treatment in Carcinoma of the Uterine Cervix (자궁경암의 방사선치료 성적)

  • Lee, Myung-Za;Kim, Jung-Jin
    • Radiation Oncology Journal
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 1985
  • From July 1979 through March 1985,112 patients with carcinoma of the uterine cervix were treated by whole pelvis irradiation and intracavitary radiation with Cs-137. The treatment consisted of 3600rad-5200rad to the whole pelvis by parallel opposing portals, 5 days per week, 180-200rad per day. Parametrial boost with 400-800rad was given in 60 patients. 2 intracavitary Cs-137 radiation using TAO applicator were done with 7-10 days interval. Total treatment times were 40-65 days with average 52 days. Total dose of radiation to point A varied from 6820 to 10500rad with average 8388rad and to point B from 4850 to 6899ra0 with average 5898rad. All patients had follow up from 6 months to 75 months and median follow up of 31 months. $9(8\%)$ had stage $14(12.5\%)$ had stage IIa, $50(44.6\%)$ had stage IIb, $33(29.5\%)$ had stage III, $6(5.4\%)$ had stage IV. 110 patients had squamous cell carcinoma and 2 patients had adenocarcinoma. 5 year actuarial survival rates were $61.8\%$ for the entire group, $84.6\%$ for stage Ib,$77.8\%$ for stage IIa, $56.7\%$ for stage IIb, $60\%$ for stage III, $33.3\%$ for stage IV. RT dose to medial parametrium (point A) below 8000rad resulted in $7/18(38.9\%)$ failure (=death) in contrast to 25/94 $(26.5\%)$ failure with dose over 8000rad. RT dose to lateral parametrium (point B) below 6000ra0 yielded 20/63 $(34.9\%)$ failure compared to $10/49(20.4\%)$ failure with dose over 6000rad. Poor survival group of age were between 40-49 years with failure of $14/41(34.1\%)$. There was no increased failure rate below age of 40 with failure of $2111(13.9\%)$. The results suggest that survival is as good as other published data, and that higher doses over 8000rad to point A and 6000rad to point B should be delivered.

  • PDF

Characterization of Hrq1-Rad14 Interaction in Saccharomyces cerevisiae (효모에서 Hrq1과 Rad14의 상호작용에 대한 연구)

  • Min, Moon-Hee;Kim, Min-Ji;Choi, You-Jin;You, Min-Ju;Kim, Uy-Ra;An, Hyo-Bin;Kim, Chae-Hyun;Kwon, Chae-Yeon;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.50 no.2
    • /
    • pp.95-100
    • /
    • 2014
  • Hrq1 is a novel member of RecQ helicase family, found in fungal genomes by bioinformatics analyses. It is most homologous to human RECQL4 and recent genetic and biochemical studies suggested that it may play roles in the maintenance of genome stability. In this study, we investigated yeast two-hybrid interactions between Hrq1 and the yeast genes homologous to the human genes that are known to interact with RECQL4. Among the 11 genes tested, Rad14, a nucleotide excision repair (NER) factor, was found to interact with Hrq1. In addition, pull-down assay with the purified proteins revealed direct protein-protein interaction between Hrq1 and Rad14. The yeast two-hybrid interaction was enhanced by the DNA damage induced by 4-nitroquinoline-1-oxide, which was dependent on the presence of Rad4, a key NER factor. These results suggest that Hrq1 may function in NER through interaction with Rad14.

The Combined Effect of Adriamycin and Irradiation on the Small Intestinal Villi of Mice (방사선 조사와 Adriamycin 병용 투여가 마우스 소장에 미치는 영향에 관한 연구)

  • Hong, Seong-Eon;Ahn, Chi-Yul
    • Radiation Oncology Journal
    • /
    • v.4 no.1
    • /
    • pp.1-13
    • /
    • 1986
  • In order to clarify the effect of radiation on the mouse jejunal crypt cells by combined administration of administration and radiation and also to evaluate the enhancing effect of adriamycin, the authors performed this study by delivering single irradiation of 1,000 to 1,600 rad to the whole abdomen of mice by cobalt-60 teletherapy unit. In combination with adriyamycin treatment groups, the drug was administered as single dose of 10 mg/kg either 2 hours before or 4 hours after graded single dose,900 to 1,400 rad, of irradiation. The authors studied the quantitative changes of intestinal crypt cells by microcolony survival assay technique and the morphological changes of small intestinal villi by scanning electron microscope in mice following to combined therapy with adriamycin and irradiation, The average number of jejunal crypts per circumference was $130{\pm}16$ in control group. The mean lethal dose(Do) of each irradiation alone and combined therapy groups 2 hours before and 4 hours after irradiation, were 160, 170, and 170 rad in cell survival curves, respectively. The dose effect factor(DEF) of adriamycin in each groups of pre-irradiation and post-irradiation were 1.19 and 1.26, respectively. The conical shaped villi were noted on 1,200 rad in irradiation alone group and 1,000 rad in combined groups. For the proper clinical application we must be careful of the radiation injury to small bowel when the anticancer chemotherapy and radiation therapy to the abdomen and pelvic area are used as combined therapeutic modality.

  • PDF

Radiation Effect on Mouse Jejunal Crypt Cells by Single and Split Irradiation (단일조사와 분할조사시 마우스 공장 소낭선세포의 방사선효과에 관한 실험적 연구)

  • Koh Byung Hee;Hahm Chang Kok;Kim Jung Jin;Park Chan Il
    • Radiation Oncology Journal
    • /
    • v.3 no.1
    • /
    • pp.1-8
    • /
    • 1985
  • To determine the dose·survival and repair characteristics of the jejunal crypt cells, experimental study was carried out using total 70 mice. Single or split irradiations of 1,100 to 2,200 rad were delivered to whole bodies of $C_{57}$ BL mice, using a cesium 137 animal irradiator and those mice were sacrificed after 90 hours. The number of regenerating crypts per jejunal circumference was counted by a jejunal crypt cell assay technique and dose·response curve was measured. The results were as follows : 1. The average number of jejunal crypts per circumference in control group was 140. In a single irradiation group, the number of regenerated jejunal crypts was, 125, 56, 2 in each subgroup of 1,100 rad, 1,400 rad and 1,800 rad respectively. In split irraiation group, it was 105,44,2 in each subgroup of 1,400rad 1,800rad and 2,200rad respectively. 2. Mean lethal dose of mouse jejunal crypt cell was 167 and 169 rad respectively in a single and split irradiation. 3. Repair dose of sublethal damage was 280 rad. 4. Sublethal damage was completely repaired within 4 hours between the split dose of irradiation.

  • PDF