• Title/Summary/Keyword: Rad-supplement

Search Result 3, Processing Time 0.016 seconds

RAD-SUPPLEMENTING MODULES

  • Ozdemir, Salahattin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.2
    • /
    • pp.403-414
    • /
    • 2016
  • Let R be a ring, and let M be a left R-module. If M is Rad-supplementing, then every direct summand of M is Rad-supplementing, but not each factor module of M. Any finite direct sum of Rad-supplementing modules is Rad-supplementing. Every module with composition series is (Rad-)supplementing. M has a Rad-supplement in its injective envelope if and only if M has a Rad-supplement in every essential extension. R is left perfect if and only if R is semilocal, reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is Rad-supplementing if and only if R is reduced and the free left R-module $(_RR)^{({\mathbb{N})}$ is ample Rad-supplementing. M is ample Rad-supplementing if and only if every submodule of M is Rad-supplementing. Every left R-module is (ample) Rad-supplementing if and only if R/P(R) is left perfect, where P(R) is the sum of all left ideals I of R such that Rad I = I.

ON A CLASS OF PERFECT RINGS

  • Olgun, Arzu;Turkmen, Ergul
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.591-600
    • /
    • 2020
  • A module M is called ss-semilocal if every submodule U of M has a weak supplement V in M such that U∩V is semisimple. In this paper, we provide the basic properties of ss-semilocal modules. In particular, it is proved that, for a ring R, RR is ss-semilocal if and only if every left R-module is ss-semilocal if and only if R is semilocal and Rad(R) ⊆ Soc(RR). We define projective ss-covers and prove the rings with the property that every (simple) module has a projective ss-cover are ss-semilocal.

A Preliminary Investigation of Radon Concentration for Some Agricultural Greenhouses in Jeju Island (제주지역 일부 농업 시설 내 라돈 농도 예비 조사)

  • Kang, Tae-Woo;Song, Myeong-Han;Kim, Tae-Hyoung;Chang, Byung-Uck;Kim, Young-Jae;Kim, Geun-Ho;Park, Jae-Woo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • BACKGROUND: A preliminary investigation of the radon ($^{222}Rn$) concentration has been conducted, employing solid-state nuclear-track detectors (SSNTD) and a continuous radon monitor (CRM), for fourteen randomly selected agricultural greenhouses in Jeju Island, where the underground-air was used for air conditioning and $CO_2$ supplement. METHODS AND RESULTS: The SSNTD was used to measure the average radon concentration for three months and the CRM was used for an instantaneous measurement. In order to obtain the radon concentration of a greenhouse, the SSNTDs were placed at a number of evenly distributed points inside the greenhouse and the mean of the measured values was taken. In addition, in order to assess the radon concentration of the underground-air itself, measurement was also made at the borehole of the underground-air in each agricultural facility, employing both the SSNTD and CRM. It is found that the radon concentration of the greenhouses ranges higher than those not using the underground-air and the average of Korean dwellings. While the radon concentration of most agricultural facilities is still lower than the reference level (1,000 Bq/$m^3$) recommended by the International Radiation Protection Committee (ICRP), three facilities at one site show higher concentrations than the reference level. The three-month-averaged radon concentration and the instantaneous radon concentration of the underground-air itself ranges 1,228- 5,259 and 3,322-17,900 Bq/$m^3$, respectively, and regional variation is more significant. CONCLUSION: From this results, radon concentration of the underground-air is assumed that it is associated with the geological characteristics and the boring depth of the region located of their.