• Title/Summary/Keyword: Race car

Search Result 14, Processing Time 0.028 seconds

Optimal Design of the Front Upright of Formula Race Car Using Taguchi's Orthogonal Array (다구찌 직교배열법을 이용한 포뮬러 레이스카 전륜 업라이트의 최적설계)

  • Jang, Woon Geun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.112-118
    • /
    • 2013
  • Formula race car is generally recognized as a vehicle which is optimally designed for on-road race track with the regulations of race host bodies. Especially, the uprights of suspension system decisively have effects on the performance of cornering and stability of race car's driving performance, which are very important factors in the design of race car. This paper is a study of optimal upright design of F1800 grade formula race car which are normally used in professional race circuit in Korea. To design optimally the front upright of F1800 formula race car, Taguchi's orthogonal array, which is known for more useful method than full factorial design experimental method in cost and time, is used with CAE method such as FEM analysis. And the result of this paper shows that Taguchi's orthogonal array employed for this optimal design is very useful for designing the front upright of race car by minimizing its weight as well as keeping its safety factor as enough as designer wants in the view of quality, cost and delivery at the early design step.

Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step (DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

Optimal Design for Torsional Stiffness of the Tubular Space Frame of a Low-Cost Single Seat Race Car (저가 입문용 1인승 레이스카 Tubular Space Frame의 비틀림 강성 최적설계)

  • Jang, Woongeun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5955-5962
    • /
    • 2014
  • Generally, the frame design of a vehicle is a critical technology that plays an important role in the racing and high performance sports car market. The high performance of race car frame means that it requires high torsional stiffness because it directly affects the cornering behavior of the race car. The optimal design for the frame of a low-cost single seat race car was carried out using the DOE (Design Of Experiments) with Taguchi's orthogonal array and FEM (Finite Element Method) analysis to secure sufficient torsional stiffness in this paper. According to the results by DOE and FEM analysis, the optimal design case produced improved 10.7% and 14.5% improvement in each stiffness-to-weight ratio and frame weight than in the early design step. Therefore, this paper shows that the optimal design with Taguchi's orthogonal array is very useful and effective for designing a tubular space frame of a low-cost single seat race car in the early design step.

A Development of Sub-Controller for Game Motion Simulator (게임기용 운동재현기의 하위제어기 설계)

  • Jung, Gyu-Hong;Suh, Chung-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.146-151
    • /
    • 2001
  • The Grand-Touring is a game motion simulator that simulates the race-car driving motion with three hydraulic cylinders which connect the platform and base in parallel. Its motion control system consists of the PC-based main controller and micro-controller based sub-controller. The former one process the dynamic image of race-car in response to the driver's action and computes the reference command for each cylinder and the latter one is designed for the tracking control of hydraulic cylinder and interfacing the auxiliary signals between various sensors/actuator and main controller. In this research, we developed the sub-controller that implements the required functions of Grand-Touring and prove the overall performance with experiments.

  • PDF

Strength Analysis of Rear Upright Laminated with Carbon Fiber Composite for Leisure Purposed Small Electric Car (카본섬유 복합재 라미네이트를 적용한 레저용 소형 전기차량의 후륜 업라이트의 구조강도 해석)

  • Jang, Woongeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.273-280
    • /
    • 2019
  • Carbon fiber composite laminate has been widely used in the area of sports applications such as race car, golf club, fishing rods, yacht. In this study, carbon fiber composite laminate was used in the rear upright of leisure purposed small size single-seat electric race car to reduce its unsprung mass of suspension system. The focus of this research is to investigate in finding optimal stacking lay-up of rear upright laminated with carbon fiber composite in the early design phase. Forces transferred from circuit road to rear upright were estimated through MBD(Multi-Body Dynamics)model of the rear suspension geometry. To evaluate the strength of the rear upright laminated with carbon fiber composite which generally behaves in an anisotropic or orthotropic manner, FEA(Finite Element Analysis) model suitable for composite materials was built followed by its strength was evaluated depending on different stacking lay-up. The result showed that Symmetric stacking lay-up [$45^{\circ}/-45^{\circ}/90^{\circ}/0^{\circ}$]s for frontal area and symmetric stacking lay-up with 1mm aluminum core [$45^{\circ}/-45^{\circ}/90^{\circ}/Core$]s for rear area were most suitable of 16 lay-up cases from the side of both strength based on Tasi-wu failure index and weight.

Faults Detection in Hub Bearing with Minimum Variance Cepstrum (최소 분산 켑스트럼을 이용한 자동차 허브 베어링 결함 검출)

  • 박춘수;최영철;김양한;고을석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.593-596
    • /
    • 2004
  • Hub bearings not only sustain the body of a car, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, vibration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

  • PDF

Fuzzy Logic Architecture for Deciding the Ranking at Racing Games (레이싱 게임에서 순위 결정을 위한 퍼지 논리 아키텍처)

  • Lee Se Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.1 s.33
    • /
    • pp.133-140
    • /
    • 2005
  • If a Player car precedes from start to the end or a fuzzy car wins every day during computer or racing games, most players will lose their interest in the games soon after several times. In order to solve this Problem and increase amusement at racing games, the more important thing than anything else is decide the ranking. In this thesis, in order to give amusement In racing games, the researcher made a fuzzy car and made it race with player cars. Because the preceding fuzzy car runs ahead of player cars, it can recognize their behaviors according to change of following player cars' speed and distance, and the fuzzy car changes its memory, but doesn't enforce actual behaviors. If the fuzzy car would make decision, it has to do behaviors to compete the ranking on the basis of the contracts it has memorized under the situation where a timer is awarded. In addition, although an accompanying fuzzy car has different contents of memory, it is operated in the same way as mentioned above. At the time of experiments, the researcher applied the actual value to the test program and drew result for ranking competition. In conclusion, the researcher could confirm that we can have modeling of various behaviors by means of the method using fuzzy logic rather than simple if-then method.

  • PDF

Implementation of an Autonomous Driving System for the Segye AI Robot Car Race Competition (세계 AI 로봇 카레이스 대회를 위한 자율 주행 시스템 구현)

  • Choi, Jung Hyun;Lim, Ye Eun;Park, Jong Hoon;Jeong, Hyeon Soo;Byun, Seung Jae;Sagong, Ui Hun;Park, Jeong Hyun;Kim, Chang Hyun;Lee, Jae Chan;Kim, Do Hyeong;Hwang, Myun Joong
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.2
    • /
    • pp.198-208
    • /
    • 2022
  • In this paper, an autonomous driving system is implemented for the Segye AI Robot Race Competition that multiple vehicles drive simultaneously. By utilizing the ERP42-racing platform, RTK-GPS, and LiDAR sensors provided in the competition, we propose an autonomous driving system that can drive safely and quickly in a road environment with multiple vehicles. This system consists of a recognition, judgement, and control parts. In the recognition stage, vehicle localization and obstacle detection through waypoint-based LiDAR ROI were performed. In the judgement stage, target velocity setting and obstacle avoidance judgement are determined in consideration of the straight/curved section and the distance between the vehicle and the neighboring vehicle. In the control stage, adaptive cruise longitudinal velocity control based on safe distance and lateral velocity control based on pure-pursuit are performed. To overcome the limited experimental environment, simulation and partial actual experiments were conducted together to develop and verify the proposed algorithms. After that, we participated in the Segye AI Robot Race Competition and performed autonomous driving racing with verified algorithms.

Effect of Corner Exit Speed on the Time to Go Down a Straight (코너 출구속도가 직선주로 주행 소요시간에 미치는 영향)

  • 장성국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.141-146
    • /
    • 2003
  • This paper calculates the elapsed time to go down a straight as a function of the corner exit speed and considers air resistance, rolling resistance, and slope resistance to figure out the force for forward acceleration. In a car racing, the most critical comer in a course is the one before the longest straight. A driver can lose a quite amount of time by taking a bad line in a corner. Taking a bad line also causes poor comer exit speed which in turn costs more elapsed time to go down a straight. The results are not so dramatic as in the case of cornering but are showing why one should take the correct corner racing line to get the maximum exit speed. Also, for the case of drag race, the elapsed time to go 1/4 mile is calculated.

Sequential Longest Section Color Winning Algorithm for Car Paint Sequencing Problem (자동차 페인트 순서 문제의 연속된 최장 구간 색 승리 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.177-186
    • /
    • 2020
  • This paper deals with the car paint sequencing problem (CPSP) that the entrance sequence is to same colored group with maximum sequenced cars for the buffer arriving cars from the body shop. This problem classified by NP-complete problem because of the exact solution has not obtained within polynomial time. CPSP is aim to minimum pugging number that each pugging must be performs at color changing time in order to entirely cleaning the remaining previous color. To be obtain the minimum number of moving distance with window concept and minimum number of pugging, this paper sorts same color and arriving sequence. Then we basically decide the maximum length section color time to winner team using stage race method. For the case of the loser team with no more racing or yield to loser team and more longer stage in upcoming racing, the winner team give way to loser team. As a result, all cars(runners) are winner in any stage without fail. For n cars, the proposed algorithm has a advantage of simple and fast with O(nlogn) polynomial time complexity, this algorithm can be get the minimum number of moving distance and purging for all of experimental data.