• Title/Summary/Keyword: Rabbit. Histological Analysis

Search Result 56, Processing Time 0.033 seconds

EFFECT OF PLATELET-RICH PLASMA ON OSTEOGENESIS OF MARROW-DERIVED OSTEOBLASTS IN THE MANDIBLE OF RABBIT: HISTOMORPHOMETRIC ANALYSIS (가토의 골수 세포에서 분화된 골모세포의 골 형성에 혈소판 농축 혈장이 미치는 효과: 조직 형태학적 분석)

  • Park, Young-Ju;Shin, Jin-Eob;Chung, Jae-An;Jeon, Min-Su;Kim, Bo-Gyun;Song, Jun-Ho;Yeon, Byong-Moo;Lim, Sung-Chul;Gang, Tae-In
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.29 no.6
    • /
    • pp.474-484
    • /
    • 2007
  • Purpose: The effect of platelet-rich plasma(PRP) on osteogenesis of marrow-derived osteoblasts on histomorphometric analysis in the mandible of rabbit was assessed. Materials and Method: Bone marrow cells were obtained from iliac bone of rabbits and were cultured in a Dulbecco's Modified Eagle's Medium(DMEM) with Dexamethasone, L-Ascortic acid, ${\beta}$-Glycerophosphate to proliferate and differentiate into osteoblasts for $4{\sim}5$ weeks. The expression of osteogenic mar-kers was detected by reverse transcription-polymerase chain reaction(RT-PCR) and silver nitrate stain. Then we prepared bony defects in the mandible of rabbit, 10.0mm in diameter and 4.0mm deep, by trephine bur. In the control group, the defects were filled with autogenous bone and cultured osteoblasts. In the experimental group, the defects were filled with autogenous bone, cultured osteoblasts and PRP. 2 weeks, 4 weeks, 8 weeks later, each group was evaluated with histological and histomorphometric analyses. Results: In vitro, osteoblasts were identified on RT-PCR and silver nitrate stain. According to histological observation, at 2 weeks well-developed anasto-mosing newly-formed woven bone was observed, at 4 weeks anastomosing newly-formed woven bone having osteoblastic activation was observed, and at 8 weeks thick newly-formed woven bone was observed in both control and experimental groups. According to histomorphometric analysis, there were 1.5% more newly-formed bone volume in experimental group than control group at 2 weeks, 28.4% more at 4 weeks, 4.3% more at 8 weeks. Particularly there were significant differences in bone volume at 4 weeks and 8 weeks new bone. Conclusion: Our results demonstrated PRP may enhance osteogenesis of marrow-derived osteoblasts at 4 weeks, 8 weeks.

Determination of the optimal diabetes duration for bone regeneration experiments in an alloxan-induced diabetic rabbit calvarial defect model

  • Jeong, Sang-Hun;Jung, Bo Hyun;Yoo, Ki-Yeon;Um, Heung-Sik;Chang, Beom-Seok;Lee, Jae-Kwan;Choi, Won-Youl
    • Journal of Periodontal and Implant Science
    • /
    • v.48 no.6
    • /
    • pp.383-394
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the optimal diabetes duration for bone regeneration experiments in an alloxan monohydrate (ALX)-induced diabetic rabbit calvarial defect model by evaluating the association between diabetes duration and bone healing capacity. Methods: Twenty-four New Zealand white rabbits were used. Twenty-two rabbits were injected with 100 mg/kg of ALX to induce experimental diabetes. These rabbits were divided into 4 groups, including a control group and groups with diabetes durations of 1 week (group 1), 2 weeks (group 2), and 4 weeks (group 3). Calvarial defects were created at 1, 2, and 4 weeks after ALX injection and in the control rabbits. Cone-beam computed tomography (CBCT) scanning was performed on the day of surgery and at 2 and 4 weeks after surgery. The rabbits were sacrificed 4 weeks after surgery, followed by histological and immunofluorescence analysis. Results: The diabetic state of all diabetic rabbits was well-maintained throughout the experiment. Reconstructed 3-dimensional CBCT imaging showed more rapid and prominent bone regeneration in the control group than in the experimental groups. Histological staining showed notable bone regeneration in the control group, in contrast to scarce bone formation in the experimental groups. The appearance and immunoreactivity of receptor activator of nuclear factor-kappa B and osteoprotegerin did not show notable differences among the groups. Conclusion: ALX administration at 100 mg/kg successfully induced experimental diabetes in rabbits. The effect of diabetes on bone healing was evident when the interval between diabetes induction and the intervention was ${\geq}1$ week.

Demineralized dentin matrix combined with recombinant human bone morphogenetic protein-2 in rabbit calvarial defects

  • Um, In-Woong;Hwang, Suk-Hyun;Kim, Young-Kyun;Kim, Moon-Young;Jun, Sang-Ho;Ryu, Jae-Jun;Jang, Hyon-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.42 no.2
    • /
    • pp.90-98
    • /
    • 2016
  • Objectives: The aim of this study was to compare the osteogenic effects of demineralized dentin matrix (DDM) combined with recombinant human bone morphogenetic protein-2 (rhBMP-2) in rabbit calvarial defects with DDM and anorganic bovine bone (ABB) combined with rhBMP-2. Materials and Methods: Four round defects with 8-mm diameters were created in each rabbit calvaria. Each defect was treated with one of the following: 1) DDM, 2) ABB/rhBMP-2, or 3) DDM/rhBMP-2. The rhBMP-2 was combined with DDM and ABB according to a stepwise dry and dip lyophilizing protocol. Histological and microcomputed tomography (${\mu}CT$) analyses were performed to measure the amount of bone formation and bone volume after 2- and 8-week healing intervals. Results: Upon histological observation at two weeks, the DDM and ABB/rhBMP-2 groups showed osteoconductive bone formation, while the DDM/rhBMP-2 group showed osteoconductive and osteoinductive bone formation. New bone formation was higher in DDM/rhBMP-2, DDM and ABB decreasing order. The amounts of bone formation were very similar at two weeks; however, at eight weeks, the DDM/rhBMP-2 group showed a twofold greater amount of bone formation compared to the DDM and ABB/rhBMP-2 groups. The ${\mu}CT$ analysis showed markedly increased bone volume in the DDM/rhBMP-2 group at eight weeks compared with that of the DDM group. Notably, there was a slight decrease in bone volume in the ABB/rhBMP-2 group at eight weeks. There were no significant differences among the DDM, ABB/rhBMP-2, and DDM/rhBMP-2 groups at two or eight weeks. Conclusion: Within the limitations of this study, DDM appears to be a suitable carrier for rhBMP-2 in orthotopic sites.

The Effects of Tetracycline-loaded Silk Fibroin Membrane on Guided Bone Regeneration in a Rabbit Calvarial Defect Model (가토 두개골 결손부 모델에서 테트라사이클린 함유 실크 파이브로인 차폐막의 골유도 재생 효과)

  • Lee, Sang-Woon;Park, Yong-Tae;Kim, Seong-Gon;Kweon, HaeYong;Jo, You-Young;Lee, Heui Sam
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.34 no.5
    • /
    • pp.293-298
    • /
    • 2012
  • Purpose: The aim of this study was to evaluate the bone regeneration ability of 1% tetracycline (TC)-loaded silk fibroin membrane (SFM), in a rabbit calvarial defect model. Methods: Twenty New Zealand white rabbits were used for this study. Bilateral round defects were made on the rabbit parietal bone, using trephine bur with an 8 mm diameter. TC-loaded SFM or SFM was covered on the right parietal bone defect, and the left parietal bone defects were uncovered for the control. The animals were humanely sacrificed at 4 or 8 weeks postoperatively. A micro-computerized tomography (${\mu}$-CT) of each specimen was taken for analysis of bone regeneration. Hematoxylin and Eosin stain were done to observe histological findings. Results: From the ${\mu}$-CT results, regenerated bone volume ($mm^3$) of 1% TC-loaded SFM, SFM, and control were $7.80{\pm}5.87$, $8.79{\pm}3.44$, and $10.61{\pm}5.3$ at 4 weeks postoperatively, respectively (P>0.05). Regenerated bone volume ($mm^3$) of 1% TC-loaded SFM, SFM, and control were $36.56{\pm}8.50$, $25.86{\pm}8.17$, and $19.09{\pm}5.07$ at 8 weeks postoperatively, respectively (P<0.05). Conclusion: The 1% TC-loaded SFM showed more bone regeneration than the SFM and the uncovered control, in guided bone regeneration.

The Effect of a Topical Selective Cyclooxygenase-2 Inhibitor on Skin-Wound Scarring of the Rabbit Ear (선택적 Cyclooxygenase-2 저해제 국소 도포가 토끼 귀의 창상반흔에 미치는 영향)

  • Kim, Do-Yup;Park, Jin-Hyung;Chun, Bong-Kwon;Han, Yea-Sik
    • Archives of Plastic Surgery
    • /
    • v.38 no.4
    • /
    • pp.351-358
    • /
    • 2011
  • Purpose: The inflammatory phase is considered an integral part of adult wound healing, but fetal wound healing studies have shown scarless healing results in the absence of the inflammation process. The COX-2 pathway is an essential component of inflammation. The purpose of this study is to identify the effect of a topical selective COX-2 inhibitor on inflammation in rabbit skin wound healing and scarring. Methods: Full-thickness wounds were made on 6 New Zealand rabbits' ears. Topical 5% celecoxib + vehicle (experimental tissue) and vehicle only (controlled tissue) were applied daily for 14d on each side of the ears. Scar samples were harvested at 2 wks, 4 wks, and 8 wks after the wounding. Each sample was stained with hematoxylin and eosin and the Masson's trichrome stain to evaluate inflammation and scar formation. Results: Histological analysis demonstrated a significant reduction of inflammation, neovascularization, and scar elevation in the experimental tissue as compared to the control. Additionally, experimental tissue exhibited faster improvement of collagen organization similar to that of normal tissue. Conclusion: This study suggests that the topical application of a selective COX-2 inhibitor on a rabbit ear wound resulted in decreased inflammation and had a positive effect on the reduction of scar formation.

Cranial bone regeneration according to different particle sizes and densities of demineralized dentin matrix in the rabbit model

  • Nam, Jin-Woo;Kim, Moon-Young;Han, Se-Jin
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.27.1-27.9
    • /
    • 2016
  • Background: The objective of this study was to place bone graft materials in cranial defects in a rabbit model and compare their bone regenerating ability according to the size and density of demineralized dentin matrix (DDM). Methods: We selected nine healthy male rabbits that were raised under the same conditions and that weighed about 3 kg. Two circular defects 8 mm in diameter were created in each side of the cranium. The defects were grafted with DDM using four different particle sizes and densities: 0.1 mL of 0.25- to 1.0-mm particles (group 1); 0. 2 mL of 0.25- to 1.0-mm particles (group 2); 0.1 mL of 1.0- to 2.0-mm particles (group 3); and 0.2 mL of 1.0- to 2. 0-mm particles (group 4). After 2, 4, and 8 weeks, the rabbits were sacrificed, and bone samples were evaluated by means of histologic, histomorphometric, and quantitative RT-PCR analysis. Results: In group 1, osteoblast activity and bone formation were greater than in the other three groups on histological examination. In groups 2, 3, and 4, dense connective tissue was seen around original bone even after 8 weeks. Histomorphometric analysis of representative sections in group 1 showed a higher rate of new bone formation, but the difference from the other groups was not statistically significant. RT-PCR analysis indicated a correlation between bone formation and protein (osteonectin and osteopontin) expression. Conclusions: DDM with a space between particles of $200{\mu}m$ was effective in bone formation, suggesting that materials with a small particle size could reasonably be used for bone grafting.

In-vitro and In-vivo Evaluation of the DTBP Crosslinked Collagen and Gelatin Coated Porous Spherical BCP Granules for Using as Granular Bone Substitutes

  • Kim, Yang-Hee;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.54.2-54.2
    • /
    • 2011
  • DTBP (dimethyl 3,3`-dithiobispropionimidate) was applied to collagen and gelatin coating on BCP granules and a crosslinking agent. The DTBP crosslinking was done for decreasing the solubility of the coating and hence increasing the stability. The nanostructure of collagen and gelatin coating surfaces were observed by SEM technique. Based on the DSC thermograms and FT-IR spectrums, the crosslinkings were confirmed between collagen molecules and gelatin molecules. The compressive strength was measured before crosslinking and after that. In-vitro study was carried out by measuring cell viability and observing cell morphology after DTBP crosslinking. Moreover, the proliferation ability of MG-63 osteoblast-like cells on the crosslinked BCP granules was evaluated by Western blot assay. The BCP granules were implanted into rabbit femur for 4 weeks and 12 weeks. The bone tissue formation was analyzed with micro-computed tomography (micro-CT) and histological analysis was also carried out by hematoxylin and eosin (H&E) staining for visualization of cells.

  • PDF

The Effects of the Mixture of Fetal Bovine Serum and Poly-glycolic acid in Rabbit Calvarial Model (Poly-glycolic Acid(PGA)와 우태아 혈청(Fetal bovine serum, FBS)의 혼합물이 가토에서 골형성에 미치는 영향)

  • Sung, Yong Duck;Kim, Yong Ha;Moon, Young Mi;Kim, Kap Joong;Kim, Yeon Jung;Choi, Sik Young
    • Archives of Plastic Surgery
    • /
    • v.34 no.3
    • /
    • pp.298-304
    • /
    • 2007
  • Purpose: This study was undertaken to investigate the osteogenic induction potential of PGA & FBS mixture on a calvarial defect in the rabbit. Methods: Twenty New zealand white rabbit, weighing from 3.5-4kg were allocated into each of the three groups. Four 8 mm sized bone defects were made on the parietal bone by drilling. In group I, the bony defects were implanted with $50{\mu}m$ thickness film containing mixture of PGA and FBS. In group II, with PGA only film, & in group III, the bony defects were left with no implants. Results were evaluated by using morphologic change, radiographic study, biochemical study and histologic examination at 1 week (group I n=7, group II n=7, group III n=14), 2 weeks (group I n=6, group II n=6, group III n=12) and 3 weeks (group I n=7, group II n=7, group III n=14) following implantation. Results: In the morphologic & radiographic study, the formation and corticalization of callus were observed earlier in group I than in groups II and III (p < 0.05). In histological examination, group I showed more abundant and faster new bone formation than in group II and III. In biochemical analysis, group I displayed more activity than in group II and III. Group I also showed more abundant osteopontin, osteocalcin than groups II and III. Conclusion: In conclusion, the results demonstrate that the mixture of PGA and FBS has an effect on osteoblastic formation in the rabbit model. It is considered that further evaluation of long term results on resorption, immunologic tissue reaction and response of applied mixture in the human model will be needed.

Bio-hybrid dental implants prepared using stem cells with β-TCP-coated titanium and zirconia

  • Safi, Ihab Nabeel;Hussein, Basima Mohammed Ali;Al-Shammari, Ahmed Majeed
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.3
    • /
    • pp.242-257
    • /
    • 2022
  • Purpose: This study investigated periodontal ligament (PDL) restoration in osseointegrated implants using stem cells. Methods: Commercial pure titanium and zirconium oxide (zirconia) were coated with beta-tricalcium phosphate (β-TCP) using a long-pulse Nd:YAG laser (1,064 nm). Isolated bone marrow mesenchymal cells (BMMSCs) from rabbit tibia and femur, isolated PDL stem cells (PDLSCs) from the lower right incisor, and co-cultured BMMSCs and PDLSCs were tested for periostin markers using an immunofluorescent assay. Implants with 3D-engineered tissue were implanted into the lower right central incisors after extraction from rabbits. Forty implants (Ti or zirconia) were subdivided according to the duration of implantation (healing period: 45 or 90 days). Each subgroup (20 implants) was subdivided into 4 groups (without cells, PDLSC sheets, BMMSC sheets, and co-culture cell sheets). All groups underwent histological testing involving haematoxylin and eosin staining and immunohistochemistry, stereoscopic analysis to measure the PDL width, and field emission scanning electron microscopy (FESEM). The natural lower central incisors were used as controls. Results: The BMMSCs co-cultured with PDLSCs generated a well-formed PDL tissue that exhibited positive periostin expression. Histological analysis showed that the implantation of coated (Ti and zirconia) dental implants without a cell sheet resulted in a well-osseointegrated implant at both healing intervals, which was confirmed with FESEM analysis and negative periostin expression. The mesenchymal tissue structured from PDLSCs only or co-cultured (BMMSCs and PDLSCs) could form a natural periodontal tissue with no significant difference between Ti and zirconia implants, consequently forming a biohybrid dental implant. Green fluorescence for periostin was clearly detected around the biohybrid implants after 45 and 90 days. FESEM showed the invasion of PDL-like fibres perpendicular to the cementum of the bio-hybrid implants. Conclusions: β-TCP-coated (Ti and zirconia) implants generated periodontal tissue and formed biohybrid implants when mesenchymal-tissue-layered cell sheets were isolated from PDLSCs alone or co-cultured BMMSCs and PDLSCs.

The bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) in the calvaria defect of rabbit (가토의 두개 결손부에서의 실크 단백질과 platelet-rich fibrin (PRF)의 골형성 효과)

  • Song, Ji-Young;Kweon, Hae-Yong;Kwon, Kwang-Jun;Park, Young-Wook;Kim, Seong-Gon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.250-254
    • /
    • 2010
  • Introduction: This study evaluated the bone regenerative effect of silk fibroin mixed with platelet-rich fibrin (PRF) of a bone defect in rabbits. Materials and Methods: Ten New Zealand white rabbits were used for this study and bilateral round shaped defects were formed in the parietal bone (diameter: 8.0 mm). The silk fibroin mixed with PRF was grafted into the right parietal bone (experimental group). The left side (control group) was grafted only PRF. The animals were sacrificed at 4 weeks and 8 weeks. A micro-computerized tomography (${\mu}$CT) of each specimen was taken. Subsequently, the specimens were decalcified and stained for histological analysis. Results: The average value of plane film analysis was higher in the experimental group than in the control group at 4 weeks and 8weeks after surgery. However, the difference was not statistically significant.(P>0.05) The tissue mineral density (TMD) in the experimental group at 4 weeks after surgery was significantly higher than the control group.(P<0.05) Conclusion: Silk fibroin can be used as a scaffold of PRF for rabbit calvarial defect repair.