• Title/Summary/Keyword: RYR1

Search Result 15, Processing Time 0.019 seconds

DNA 검사기법을 이용한 PSE육 생산 돼지 진단

  • Kim, Hye-Jeong;Sin, Seong-Cheol;Chae, Ji-Seon;Choe, Eun-Ju;Kim, Hui-Seon;Kim, Hyeon-Seok;Jeong, Gu-Yong;Jeong, Ui-Ryong
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.177-180
    • /
    • 2004
  • 본 연구는 PCR-RFLP 및 PCR-SSCP 기법을 이용하여 PSE 돈육을 생산하는 PSS 돼지 유전자 진단 기술을 개발하고 이를 이용한 국내 종돈 및 교잡 비육돈의 PSS 유전자 출현 빈도를 파악하고자 수행하였다. 돼지 PSS의 원인이 되는 ryanodine receptor 유전자의 단일염기 돌연변이 $C{\rightarrow}T$ ; $Arg\;{\rightarrow}\;Cys$)를 포함하는 134 bp 영역을 PCR로 증폭한 후 RFLP 및 SSCP 기법으로 분석한 결과 동형접합체의 정상(N/N), 이형접합체의 잠재성 개체 (N/n) 그리고 돌연변이 유전자를 동형접합체 상태로 갖는 PSS 감수성 개체(n/n)에 각각 특이적인 유전자형이 검출되었다. 특히, PCR-SSCP기법을 이용한 RYR1 유전자 돌연변이 검출 방법은 보다 신속 간편하면서도 상대적으로 분석비용이 저렴한 정확성이 높은 PSS 돼지 진단기술로서 대규모 돼지집단검색이나 RFLP 방법으로 판정이 불확실한 시료의 재검에 효율적으로 이용할 수 있을 것으로 판단된다.

  • PDF

A whole genomic scan to detect selection signatures between Berkshire and Korean native pig breeds

  • Edea, Zewdu;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.56 no.7
    • /
    • pp.23.1-23.7
    • /
    • 2014
  • Background: Scanning of the genome for selection signatures between breeds may play important role in understanding the underlie causes for observable phenotypic variations. The discovery of high density single nucleotide polymorphisms (SNPs) provide a useful starting point to perform genome-wide scan in pig populations in order to identify loci/candidate genes underlie phenotypic variation in pig breeds and facilitate genetic improvement programs. However, prior to this study genomic region under selection in commercially selected Berkshire and Korean native pig breeds has never been detected using high density SNP markers. To this end, we have genotyped 45 animals using Porcine SNP60 chip to detect selection signatures in the genome of the two breeds by using the $F_{ST}$ approach. Results: In the comparison of Berkshire and KNP breeds using the FDIST approach, a total of 1108 outlier loci (3.48%) were significantly different from zero at 99% confidence level with 870 of the outlier SNPs displaying high level of genetic differentiation ($F_{ST}{\geq}0.490$). The identified candidate genes were involved in a wide array of biological processes and molecular functions. Results revealed that 19 candidate genes were enriched in phosphate metabolism (GO: 0006796; ADCK1, ACYP1, CAMK2D, CDK13, CDK13, ERN1, GALK2, INPP1; MAK, MAP2K5, MAP3K1, MAPK14, P14KB, PIK3C3, PRKC1, PTPRK, RNASEL, THBS1, BRAF, VRK1). We have identified a set of candidate genes under selection and have known to be involved in growth, size and pork quality (CART, AGL, CF7L2, MAP2K5, DLK1, GLI3, CA3 and MC3R), ear morphology and size (HMGA2 and SOX5) stress response (ATF2, MSRB3, TMTC3 and SCAF8) and immune response (HCST and RYR1). Conclusions: Some of the genes may be used to facilitate genetic improvement programs. Our results also provide insights for better understanding of the process and influence of breed development on the pattern of genetic variations.

The Effects of Stress Related Genes on Carcass Traits and Meat Quality in Pigs

  • Jin, H.J.;Park, B.Y.;Park, J.C.;Hwang, I.H.;Lee, S.S.;Yeon, S.H.;Kim, C.D.;Cho, C.Y.;Kim, Y.K.;Min, K.S.;Feng, S.T.;Li, Z.D.;Park, C.K.;Kim, C.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.280-285
    • /
    • 2006
  • The current study was conducted to investigate the relationship between stress related gene and meat quality in pigs. A total number of 212 three-way cross bred (Landrace-$Yorkshire{\times}Duroc$) and 38 Duroc were sampled from the Korean pig industry to determine genotype frequency of porcine stress syndrome (PSS) and heat shock protein 70 kDa (HSP70) genes and their relationship with carcass traits and longissimus meat quality. Screen of HSP70 was performed by the single strand conformation polymorphism (SSCP) technique. Based on the analysis of restriction fragment length polymorphism (RFLP) in ryanodine receptor 1 (RYR1) gene, genetic disorder of PSS was related to a mutation at $18,168^{th}$ (C to T) of exon 17. There was no significant difference in ultimate meat pH and backfat thickness between HSP70 K1-AA type and -BB type in pure Duroc breed. In Landrace-$Yorkshire{\times}Duroc$ (L-$Y{\times}D$) cross bred pig, our results indicated that HSP70 derivate type in Duroc had a limited effect on backfat thickness, but L-$Y{\times}D$ type had a noticeable linkage with HSP70 K1-AA and K3-AB. This tendency was also observed in hot carcass weight where HSP70 K1-AA and K3-AB resulted in heavier weight with 86.3 kg compared to HSP70 K1-AB and K3-BB of 74.3 kg. Results imply that stress related HSP70 genotype has a potential association with backfat thickness and carcass weight.

Influence of Genetic Background on Porcine Stress Syndrome Incidence and Pork Quality Attributes (품종이 Porcine Stress Syndrome 돼지 출현비율 및 육질에 미치는 영향)

  • Kim, D.H.;Kim, T.H.;Lee, Y.C.;Lee, J.R.;Choi, J.S .;Lee, M.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.841-846
    • /
    • 2003
  • Landrace(L), Largewhite(Lw), Korean Native Pig(KNP) and commercial hybrid were experimented to determine holothane sensitivity, RYR gene mutation and quality profiles. In the results of halothane test, the incidence of halothane positive pigs was similar between L and Lw. But, the rate of dubious halothane positive type was higher in L than Lw. In hal-gene analysis, halothane-positive pigs(nn) were not found in any tested breed and heterotype(Nn) appeared only in one pig of L. Of the breed effect on the quality profiles, there were no differences in pH$_1$(pH at 1hr postslaughter), but pH$_{u}$(pH at 24hr postslaughter) was significantly higher in commercial hybrid and KNP than other breeds(p〈0.05). Color assessed by National Pork Producers Council(NPPC) and CIE L$^{*}$ was significantly paler in L breed than other breeds(p〈0.05). Significant differences were found in water holding capacity(WHC) and cooking loss in KNP(p〈0.05).

Effect of Xenogeneic Substances on the Glycan Profiles and Electrophysiological Properties of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

  • Yong Guk, Kim;Jun Ho Yun;Ji Won Park;Dabin Seong;Su-hae Lee;Ki Dae Park;Hyang-Ae Lee;Misun Park
    • International Journal of Stem Cells
    • /
    • v.16 no.3
    • /
    • pp.281-292
    • /
    • 2023
  • Background and Objectives: Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte (CM) hold great promise as a cellular source of CM for cardiac function restoration in ischemic heart disease. However, the use of animal-derived xenogeneic substances during the biomanufacturing of hiPSC-CM can induce inadvertent immune responses or chronic inflammation, followed by tumorigenicity. In this study, we aimed to reveal the effects of xenogeneic substances on the functional properties and potential immunogenicity of hiPSC-CM during differentiation, demonstrating the quality and safety of hiPSC-based cell therapy. Methods and Results: We successfully generated hiPSC-CM in the presence and absence of xenogeneic substances (xeno-containing (XC) and xeno-free (XF) conditions, respectively), and compared their characteristics, including the contractile functions and glycan profiles. Compared to XC-hiPSC-CM, XF-hiPSC-CM showed early onset of myocyte contractile beating and maturation, with a high expression of cardiac lineage-specific genes (ACTC1, TNNT2, and RYR2) by using MEA and RT-qPCR. We quantified N-glycolylneuraminic acid (Neu5Gc), a xenogeneic sialic acid, in hiPSC-CM using an indirect enzyme-linked immunosorbent assay and liquid chromatography-multiple reaction monitoring-mass spectrometry. Neu5Gc was incorporated into the glycans of hiPSC-CM during xeno-containing differentiation, whereas it was barely detected in XF-hiPSC-CM. Conclusions: To the best of our knowledge, this is the first study to show that the electrophysiological function and glycan profiles of hiPSC-CM can be affected by the presence of xenogeneic substances during their differentiation and maturation. To ensure quality control and safety in hiPSC-based cell therapy, xenogeneic substances should be excluded from the biomanufacturing process.