• Title/Summary/Keyword: RWDT

Search Result 3, Processing Time 0.034 seconds

Tracking Resistance and Aging Characteristics of Epoxy Insulating Materials by the Rotating Wheel Dip Test (Rotating Wheel Dip Test에 의한 에폭시 절연재료의 내트래킹성과 열화 특성)

  • Cho, Han-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.6
    • /
    • pp.530-537
    • /
    • 2008
  • This paper describes the results of a study on the tracking performance of outdoor insulating materials based on the rotating wheel dip test(RWDT). And, the influence of surface degradation was evaluated through such as measurement of the flashover voltage after and before tracking test, also aspects of surface degradation using scanning electron microscopy. The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler, the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage, despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same.

Tracking Resistance of Epoxy Mold Insulating Materials by the Rotating Wheel Dip Test (회전윤법에 의한 에폭시 몰드 절연재료의 내트래킹성 평가)

  • Cho, Han-Goo;Yun, Mun-Su;Park, Yang-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1590-1592
    • /
    • 2000
  • The time to tracking breakdown of treated filled specimen is longer than untreated filled specimen. And, after the RWDT, the surface of specimen by adding untreated filler appeared heavy erosion. It was found that the addition to surface treated filler. the better tracking resistance. In the RWDT, the breakdown specimen is not affected by the dry flashover voltage. despite the fact that the surface degradation of tracking test has different state on each specimen. This suggests that wet flashover voltage play an important role in evaluating of tracking and erosion on the surface degradation in tracking test. And, the flashover voltage of specimen under wet conditions are greatly affected by the salt concentration and degree of degradation by the RWDT. Because of hydrophobicity and degree of degradation by the RWDT, the flashover voltage of treated filled specimen is higher than that of untreated filled specimen. Different types of specimen may have different hydrophobicity and their surface state under contaminated conditions may not be the same. It is assumed that this phenomenon is related to the decrease in hydrophobicity of the surface of the materials.

  • PDF

Hydrophobicity and tracking resistance of SIR for outdoor Insulators (초고압 옥외용 실리콘 고무의 발수성 및 트래킹 특성)

  • Han, D.H.;Kang, D.P.;Park, H.Y.;Lee, K.H.;Lee, K.C.;Min, K.E.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1560-1562
    • /
    • 2000
  • The paper reports on a study of the influence of the silicone oils on the tracking and erosion resistance and hydrophobicity of SIR. Two silicone oils(A, B) having different chemical structure were selected in consideration of goof hydrophobicity and processability. Tracking and erosion resistance of SIR was investigated by the rotating wheel dip test (RWDT). In this test tracking and erosion areas due to glow and partial arc discharges cause an increase in the leakage current with an increase in time. Leakage current of SIR was decreased with increasing ratio of oil A/B. SIR was exposed to corona discharges in air and the specimens were analyzed with contact angle. It was observed that the contact angle of SIR was increased gradually in time. The recovery of hydrophobicity was increased with increasing ratio of oil A/B.

  • PDF