• Title/Summary/Keyword: RVE generation

Search Result 4, Processing Time 0.022 seconds

Microstructure Generation and Linearly Elastic Characteristic Analysis of Hierarchical Models for Dual-Phase Composite Materials (이종 입자복합재의 미세구조 생성과 계층적 모델의 선형 탄성적 응답특성 해석)

  • Cho, Jin-Rae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.3
    • /
    • pp.133-140
    • /
    • 2018
  • This paper is concerned with the 2-D micostructure generation for $Ni-A{\ell}_2O_3$ dual-phase composite materials and the numerical analysis of mechanical characteristic of hierarchical models of microstructure which are defined in terms of the scale of microstructure. The microstructures of dual-phase composite materials were generated by applying the mathematical RMDF(random morphology description functions) technique to a 2-D RVE of composite materials. And, the hierarchical models of microstructure were defined by the number of Gaussian points. Meanwhile, the volume fractions of metal and ceramic particles were set by adjusting the level of RMD functions. The microstructures which were generated by RMDF technique are definitely random even though the total number of Gaussian points is the same. The randomly generated microstructures were applied to a 2-D beam model, and the variation of normal and shear stresses to the scale of microstructure was numerically investigated. In addition, through the crack analyses, the influence of RMDF randomness and Gauss point number on the crack-tip stress is investigated.

Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements (다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성)

  • Sohn, Dongwoo;Park, Jong Youn;Cho, Young-Sam;Lim, Jae Hyuk;Lee, Haengsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2014
  • Finite element modeling of composite structures may be cumbersome due to complex distributions of reinforcements. In this paper, an efficient scheme is proposed that can generate periodic meshes for the composite structures. Regular meshes with hexahedral finite elements are first prepared, and the elements are then trimmed to fit external surfaces of reinforcements in the composite structures. The trimmed hexahedral finite elements located at interfaces between the matrix and the reinforcements correspond to polyhedral finite elements, which allow an arbitrary number of nodes and faces in the elements. Because the trimming process is consistently conducted by means of consistent algorithms, the elements of the reinforcements are automatically compatible with those of the matrices. With the additional consideration of periodicity of reinforcements in a representative volume element(RVE), the proposed scheme provides periodic meshes in an efficient manner, which are compatible for each pair of periodic boundaries of the RVE. Therefore, periodic boundary conditions for the RVE are enforced straightforwardly. Numerical examples demonstrate the effectiveness of the proposed scheme for finite element modeling of complex composite structures.

Influence of the microstructure on effective mechanical properties of carbon nanotube composites

  • Drucker, Sven;Wilmers, Jana;Bargmann, Swantje
    • Coupled systems mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Despite the exceptional mechanical properties of individual carbon nanotubes (CNTs), the effective properties of CNT-reinforced composites remain below expectations. The composite's microstructure has been identified as a key factor in explaining this discrepancy. In this contribution, a method for generating representative volume elements of aligned CNT sheets is presented. The model captures material characteristics such as random waviness and entanglement of individual nanotubes. Thus it allows studying microstructural effects on the composite's effective properties. Simulations investigating the strengthening effect of the application of a pre-stretch on the CNTs are carried out and found to be in very good agreement with experimental values. They highlight the importance of the nanotube's waviness and entanglement for the mechanical behavior of the composite. The presented representative volume elements are the first to accurately capture the waviness and entanglement of CNT sheets for realistically high volume fractions.

Spatial dispersion of aggregate in concrete a computer simulation study

  • Hu, Jing;Chen, Huisu;Stroeven, Piet
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.301-312
    • /
    • 2006
  • Experimental research revealed that the spatial dispersion of aggregate grains exerts pronounced influences on the mechanical and durability properties of concrete. Therefore, insight into this phenomenon is of paramount importance. Experimental approaches do not provide direct access to three-dimensional spacing information in concrete, however. Contrarily, simulation approaches are mostly deficient in generating packing systems of aggregate grains with sufficient density. This paper therefore employs a dynamic simulation system (with the acronym SPACE), allowing the generation of dense random packing of grains, representative for concrete aggregates. This paper studies by means of SPACE packing structures of aggregates with a Fuller type of size distribution, generally accepted as a suitable approximation for actual aggregate systems. Mean free spacing $\bar{\lambda}$, mean nearest neighbour distance (NND) between grain centres $\bar{\Delta}_3$, and the probability density function of ${\Delta}_3$ are used to characterize the spatial dispersion of aggregate grains in model concretes. Influences on these spacing parameters are studied of volume fraction and the size range of aggregate grains. The values of these descriptors are estimated by means of stereological tools, whereupon the calculation results are compared with measurements. The simulation results indicate that the size range of aggregate grains has a more pronounced influence on the spacing parameters than exerted by the volume fraction of aggregate. At relatively high volume density of aggregates, as met in the present cases, theoretical and experimental values are found quite similar. The mean free spacing is known to be independent of the actual dispersion characteristics (Underwood 1968); it is a structural parameter governed by material composition. Moreover, scatter of the mean free spacing among the serial sections of the model concrete in the simulation study is relatively small, demonstrating the sample size to be representative for composition homogeneity of aggregate grains. The distribution of ${\Delta}_3$ observed in this study is markedly skew, indicating a concentration of relatively small values of ${\Delta}_3$. The estimate of the size of the representative volume element (RVE) for configuration homogeneity based on NND exceeds by one order of magnitude the estimate for structure-insensitive properties. This is in accordance with predictions of Brown (1965) for composition and configuration homogeneity (corresponding to structure-insensitive and structure-sensitive properties) of conglomerates.