• Title/Summary/Keyword: RVE

Search Result 58, Processing Time 0.029 seconds

Representative Volume Element Analysis of Fluid-Structure Interaction Effect on Graphite Powder Based Active Material for Lithium-Ion Batteries

  • Yun, Jin Chul;Park, Seong Jin
    • Journal of Powder Materials
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • In this study, a finite element analysis approach is proposed to predict the fluid-structure interaction behavior of active materials for lithium-ion batteries (LIBs), which are mainly composed of graphite powder. The porous matrix of graphite powder saturated with fluid electrolyte is considered a representative volume element (RVE) model. Three different RVE models are proposed to consider the uncertainty of the powder shape and the porosity. P-wave modulus from RVE solutions are analyzed based on the microstructure and the interaction between the fluid and the graphite powder matrix. From the results, it is found that the large surface area of the active material results in low mechanical properties of LIB, which leads to poor structural durability when subjected to dynamic loads. The results obtained in this study provide useful information for predicting the mechanical safety of a battery pack.

Geometrical Modeling for Hybrid 3-D Braided Composites (하이브리드 삼차원 브레이딩 복합재료의 기하학적 모델링)

  • 한문희;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.67-70
    • /
    • 2003
  • To develop an effective geometric modeling is essential in order that precise mechanical properties and the geometrical properties of the 3-D braided composites can be estimated. RVE(representative volume element) was adopted fur geometrical modeling. RVE consisted of IC(inner unit cell), ISUC(interior surface unit cell) and ESUC(exterior surface unit cell). The whole geometrical model fur hybrid 3-D braided composites was developed.

  • PDF

Evaluation of RVE Suitability Based on Exponential Curve Fitting of a Probability Distribution Function (확률 분포 함수의 지수 곡선 접합을 이용한 RVE 적합성 평가)

  • Chung, Sang-Yeop;Yun, Tae Sup;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.425-431
    • /
    • 2010
  • The phase distribution in a multi-phase material strongly affects its material properties. Therefore, a proper method to describe the phase distribution of a material is needed. In this research, probability distribution functions, two-point correlation and lineal-path functions, are used to represent the probabilistic phase distributions of a material. The probability distribution function is calculated using a numerical method and is described as an analytical form via exponential curve fitting with three parameters. Application of analytical form of probability distribution function is investigated using two-phase polycrystalline solids and soil samples. It is confirmed that the probability distribution functions can be represented as an exponential form using curve fitting which helps identifying the applicability of a representative volume element(RVE).

Functionally Graded Structure Design for Heat Conduction Problems using Machine Learning (머신 러닝을 사용한 열전도 문제에 대한 기능적 등급구조 설계)

  • Moon, Yunho;Kim, Cheolwoong;Park, Soonok;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.159-165
    • /
    • 2021
  • This study introduces a topology optimization method for the simultaneous design of macro-scale structural configuration and unit structure variation to ensure effective heat conduction. Shape changes in the unit structure depending on its location within the macro-scale structure result in micro- as well as macro-scale design and enable better performance than using isotropic unit structures. They result in functionally graded composite structures combining both configurations. The representative volume element (RVE) method is applied to obtain various thermal conductivity properties of the multi-material based unit structure according to its shape change. Based on the RVE analysis results, the material properties of the unit structure having a certain shape can be derived using machine learning. Macro-scale topology optimization is performed using the traditional solid isotropic material with penalization method, while the unit structures composing the macro-structure can have various shapes to improve the heat conduction performance according to the simultaneous optimization process. Numerical examples of the thermal compliance minimization issue are provided to verify the effectiveness of the proposed method.

Evaluation of Elastic Modulus of Concrete Using Micro-mechanics Models (콘크리트 탄성계수의 미시역학적 추정)

  • 유동우;조호진;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.345-349
    • /
    • 1995
  • Although heterogeneous materials consisted of micro-constituents are complicated, it is possible to evaulate effective elastic moduli by using micro-mechanics models. In order to evaluate effective elastic moduli of concrete, all aggregates in a representative volume element(RVE) are assumed spherical and randomly distributed. A dilute distribution of inclusions is considered first, and the corresponding overall elastic moduli of the RVE are estimated. Then, the self-consistent method is used in order to take into account the interaction effects. The elastic moduli of concrete are calculated using the models and compared with those of experiment for different volume fractions of the aggregates and elastic moduli of the mortar and the aggregates.

  • PDF

Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models

  • Han, Su Yeon;Kim, Sung Jun;Shin, Eui Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • A poroelastic composite material, containing different material phases and filled with fluids, serves as a model to formulate the overall ablative behaviors of such materials. This article deals with the assessment of variation in nondeterministic poroelastic properties of two-phase composite materials using micromechanical representative volume element (RVE) models. Considering the configuration and arrangement of pores in a matrix phase, various RVEs are modeled and analyzed according to their porosity. In order to quantitatively investigate the effects of microstructure, changes in effective elastic moduli and poroelastic parameters are measured via finite element (FE) analysis. The poroelastic parameters are calculated from the effective elastic moduli and the pore-pressure-induced strains. The reliability of the numerical results is verified through image-based FE models with the actual shape of pores in carbon-phenolic ablative materials. Additionally, the variation of strain energy density is measured, which can possibly be used to evaluate microstress concentrations.

Experimental investigating and machine learning prediction of GNP concentration on epoxy composites

  • Hatam K. Kadhom;Aseel J. Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.403-415
    • /
    • 2024
  • We looked at how the damping qualities of epoxy composites changed when different amounts of graphite nanoplatelets (GNP) were added, from 0% to 6% by weight. A mix of free and forced vibration tests helped us find the key GNP content that makes the damper ability better the most. We also created a Representative Volume Element (RVE) model to guess how the alloys would behave mechanically and checked these models against testing data. An Artificial Neural Network (ANN) was also used to guess how these compounds would react to motion. With proper hyperparameter tweaking, the ANN model showed good correlation (R2=0.98) with actual data, indicating its ability to predict complex material behavior. Combining these methods shows how GNPs impact epoxy composite mechanical properties and how machine learning might improve material design. We show how adding GNPs to epoxy composites may considerably reduce vibration. These materials may be used in industries that value vibration damping.

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites (탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증)

  • Hwang, Yeon-Taek;Lim, Jae-Young;Nam, Byeung-Gun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.276-281
    • /
    • 2018
  • In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.