• Title/Summary/Keyword: RUNOff RATE

Search Result 442, Processing Time 0.028 seconds

제주도 하천의 수위-유량 변동특성연구

  • 문덕철;하규철;고기원;박기화
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.422-425
    • /
    • 2004
  • To understand runoff Phenomena in Jeju island, some streams are monitored automatically about stream stage, and water quality in Jeju Provincial Water Resources Management Office. Rating curves for stream discharge are reviewed. Stream stages respond very quick to some rainfall events, and parameters influencing runoff phenomena such as landuse, soil condition, preconditoned rainfall, and vegetables will be studied. A few thousand to ten thousand ml/day are estimated from 6 permanent streams in Jeju island.

  • PDF

The Characteristics and Experimental Application of AGNPS Model for Pollution Predicting in Small Watershed (소유역 오염예측모형 AGNPS 의 특성과 실험적 적용)

  • Choi, Jin-Kyu;Lee, Myung-Woo;Son, Jae-Gwon
    • Journal of Environmental Impact Assessment
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 1994
  • AGNPS model is an event-based model to analyze nonpoint-source and to examine potential water quality problems from agricultural watershed. This model uses a square grid-cell system to represent the spatial variability of watershed conditions, and simulates runoff, sediment, and nutrient transport for each cell. AGNPS model was applied on Yeonwha watershed, and the test results were compared with the measured data for runoff volume, peak runoff rate, suspended solids, and phosphorus concentration. The watershed of 278.8 ha was divided into 278 cells, each of which was 1 ha in size. The coefficients of determination for runoff volume and peak flow were (0.893 and 0.801 respectively from regression of the estimated values on the measured values. The concentration of suspendid solid was increased but decreased that of phosphate with runoff volume.

  • PDF

Runoff Characteristics of Non-point Source According to Rainfall in Nam Watershed (남천에서의 강우시 비점오염물질의 유출특성)

  • Jang, Seong-Ho;Park, Jin-Sick
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • This study was conducted to identify the runoff characteristics of non-point source according to rainfall in Nam watershed. Land-uses of the Nam watershed were surveyed paddy field 4.5%, crop field 6.8%, mountainous 78.7%, urban 2.4%, and etc. 7.7%. Mean runoff coefficients in each area were observed Ⅰ area 0.08, Ⅱ area 0.08, and Ⅲ area 0.05. In the relationship between the rainfall and peak-flow, correlation coefficients(r) were investigated Ⅰ area -0.8609, Ⅱ area 0.6035, and Ⅲ area -0.4913. In the relationship between the antecedent dry period and first flow runoff, correlation coefficients(r) were investigated Ⅰ area -0.9093, Ⅱ area -0.1039, and Ⅲ area -0.7317. The discharge of pollutant concentrations relates to the flow rate of storm-water. In the relationship between the rainfall and watershed loading, exponent values of BOD, COD, SS, and T-N were estimated to 1.2751, 1.2003, 1.3744, and 1.1262, respectively.

Computing Probability Flood Runoff for Flood Forecasting & Warning System - Computing Probability Flood Runoff of Hwaong District - (홍수 예.경보 체계 개발을 위한 연구 - 화옹호 유역의 유역 확률홍수량 산정 -)

  • Kim, Sang-Ho;Kim, Han-Joong;Hong, Seong-Gu;Park, Chang-Eoun;Lee, Nam-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.23-31
    • /
    • 2007
  • The objective of the study is to prepare input data for FIA (Flood Inundation Analysis) & FDA (Flood Damage Assessment) through rainfall-runoff simulation by HEC-HMS model. For HwaOng watershed (235.6 $km^{2}$), HEC-HMS was calibrated using 6 storm events. Geospatial data processors, HEC-GeoHMS is used for HEC-HMS basin input data. The parameters of rainfall loss rate and unit hydrograph are optimized from the observed data. HEC-HMS was applied to simulate rainfall-runoff relation to frequency storm at the HwaOng watershed. The results will be used for mitigating and predicting the flood damage after river routing and inundation propagation analysis through various flood scenarios.

An Experimental Study on Infiltration Characteristics of Facilities for Reducing Runoff Considering Surface Materials According to Housing Lot Developments (택지개발에 따른 표면재료를 고려한 우수유출저감시설의 침투 특성에 관한 실험 연구)

  • Im, Janghyuk;Song, Jaiwoo;Park, Sungsik;Park, Hosang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.47-55
    • /
    • 2007
  • The increment of impermeable land area due to widespread land development caused the adverse impact on urban disaster prevention because it could decrease the peak rate of runoff as well as increase the runoff and peak flow during rainy period. To date, little research has been conducted on the infiltration characteristics and quantitative analysis because of their highly dependence on construction method, paving material, surface permeability, and field condition. Hence, this study was performed to investigate the infiltration characteristics of runoff-reducing facilities according to the type of paving material, which were examined using experimental apparatus with varying paving material and rainfall intensity, and thus to provide fundamental research data for runoff-reducing infiltration facilities. In this study, the infiltration characteristics were examined under the rainfall intensity of 20, 30, 50, 80, 100, 200 mm/hr for a variety type of paving materials such as concrete, asphalt, sand, grassland, and permeable paving material. The infiltration rate for permeable paving material was observed to be more than 93% under the condition of less than 200 mm/hr of rainfall intensity. For the compacted earth and grassland, the ultimate infiltration rate was estimated to be about 13% to 67%. The permeable paving material was concluded to be the most appropriate one for the runoff-reducing infiltration facilities because it has more favorable advantages than others in the light of infiltration volume, disaster prevention, and river training.

  • PDF

Development of Stream Width and Bed-slope Estimation Equations for Preparing Data for Distributed Storm Runoff Model (분포형 강우-유출모형의 하도자료 구축을 위한 하폭 및 하상경사 산정공식 개발)

  • Jung, In-Kyun;Park, Jong-Yoon;Joh, Hyung-Kyung;Lee, Ji-Wan;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.4
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, two estimation equations for preparing stream data for distributed storm runoff model were developed by analyzing the nonlinear relation between upstream flow-length and stream width, and between upstream flow-length and stream bed-slope. The equations for stream cell were tested in Chungjudam watershed (6,661 $km^2$) using KIMSTORM. Six storm events occurring between 2003 and 2008 were selected for the model calibration and verification before the test of equations. The average values of the Nash-Sutcliffe model efficiency (ME), the volume conservation index (VCI), the relative error of peak runoff rate (EQp), and the difference of time to peak runoff (DTp) were 0.929, 1.035, 0.037, and -0.406 hr for the calibrated four storm events and 0.956, 0.939, 0.055, and 0.729 hr for the two verified storm events respectively. The estimation equations were tested to the storm events, and compared the flood hydrograph. The test result showed that the estimation equation of stream width reduced the peak runoff and delaying the time to peak runoff, and the estimation equation of stream bed-slope showed the opposite results.

Estimation of Surface Runoff from Paddy Plots using an Artificial Neural Network (인공신경망 기법을 이용한 논에서의 지표 유출량 산정)

  • Ahn, Ji-Hyun;Kang, Moon-Seong;Song, In-Hong;Lee, Kyong-Do;Song, Jeong-Heon;Jang, Jeong-Ryeol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.65-71
    • /
    • 2012
  • The objective of this study was to estimate surface runoff from rice paddy plots using an artificial neural network (ANN). A field experiment with three treatment levels was conducted in the NICS saemangum experimental field located in Iksan, Korea. The ANN model with the optimal network architectures, named Paddy1901 with 19 input nodes, 1 hidden layer with 16 neurons nodes, and 1 output node, was adopted to predict surface runoff from the plots. The model consisted of 7 parameters of precipitation, irrigation rate, ponding depth, average temperature, relative humidity, wind speed, and solar radiation on the daily basis. Daily runoff, as the target simulation value, was computed using a water balance equation. The field data collected in 2011 were used for training and validation of the model. The model was trained based on the error back propagation algorithm with sigmoid activation function. Simulation results for the independent training and testing data series showed that the model can perform well in simulating surface runoff from the study plots. The developed model has a main advantage that there is no requirement for any prior assumptions regarding the processes involved. ANN model thus can be a good tool to predict surface runoff from rice paddy fields.

Characteristics of UNFS Using Carbide Pellet and Zeolite Pellet to Remove Heavy Metals Contained in Road Runoff (탄화물 및 제올라이트 여재를 사용하는 UNFS(Upflow Non-point source Filtering System) 시설의 노면배수에 함유된 중금속 제거 특성)

  • Kim, Boo-Gil;Park, Han-Ju;Kim, Il-Ryong
    • Journal of Environmental Science International
    • /
    • v.17 no.10
    • /
    • pp.1147-1154
    • /
    • 2008
  • Road runoff, one of non-point source pollutants, contains various heavy metals, most of which flow into discharge waters without being treated. The mechanism of removing the heavy metals in water is similar to that of removing micro-particles. Therefore, it is considered that it is possible to remove a lot of the heavy metals contained in the road runoff by filtering or absorbing them. In this paper, performed has been a basic study on the characteristics of UNFS (Up Flow Non-Point Source Filtering System) using carbide pellet and zeolite pellet as double-layer filtering mediums to treat the road runoff. The removal rate with filtering and absorption time has been shown as follows: 29.0% for Cr; 27.8% for Cd; 25.7% for Fe; 25.4% for Co; 21.2% for Pb; ]9.6% for Zn; 18.2% for Al; 17.0% for Mn; 11.3% for Ni; 7.5% for Cu. The overall removal rate according to influx change has been shown to be approximately 30%, and the load of heavy metals flowing out in initial precipitation could be reduced by using carbide as a recycling filtering medium. When the removal as coarse particles settle is added up, it is expected that UNFS will result in a higher removal rate.

Estimation of Appropriate Infiltration Rate and the Effects of the Flowerbed Type Infiltration System (화단형 침투시설의 단위설계침투량 산정 및 효과분석)

  • Han, Young-Hae;Lee, Tae-Goo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.140-147
    • /
    • 2012
  • This study developed a flowerbed type infiltration system that could control the amount of runoff discharge under a certain level estimated its proper design infiltration rate, and analyzed the effects of its implementation. Analyzing the performance of infiltration system is the one of the essential processes that should be under review to predict its effects after implementation when a rainwater infiltration system is included in a district-based plan. To estimate the unit design infiltration rate of this system, the runoff decrease effect was analyzed by varying the unit infiltration rate of the system applied to the parking lot adjacent to the Korea Institute of Construction Technology laboratory building by using a water balance analysis program. After varying the unit design infiltration to $0.1{\sim}3m^3/m^2.day$ to analyze the variation in the rate of runoff, 80% of the runoff was infiltrated at $1.0m^3/m^2.day$, and the unit infiltration design rate at the time was 0.0416(m3/m2.hr). It was also found that the unit design infiltration rate obtained from a field infiltration test of the developed system was about $0.045m^3/hr$. Based on this study, it was possible that infiltration rate is estimated to consider the economic scale and environmental effect. It is significant to apply the spatial plan of rainwater infiltration system as green infrastructure.

A Study on the Proper Size of Rainwater Stored Tank in Submerged Districts Using SWMM Program (SWMM을 활용한 침수예상지역 우수저류조의 적정크기결정에 관한 연구)

  • Jang, Seung-Jae
    • Journal of the Korean housing association
    • /
    • v.20 no.3
    • /
    • pp.69-76
    • /
    • 2009
  • The Storm Water Management Model(SWMM) by EPA is a dynamic rainwater-runoff simulation model used for single event or long-term simulation of runoff quantity and quality from primarily urban areas. The SWMM simulation program is operated by the site area, the weather date, conduit plan etc. on reference region. The purpose of this study was to analyze flood area, the duration of flooded and surcharged on the reference region. Without rainwater stored tank, the area of flooded and surcharged on reference area is similar to the area of reference region. But, With rainwater stored tank, the area of flooded and surcharged on reference area is much reduced compared to without rainwater stored tank. According to SWMM simulation results, the rainwater stored tank is located closer to site is more effective for reduction of duration of flooded and surcharged and flow rate.