• Title/Summary/Keyword: RTT Fairness

Search Result 24, Processing Time 0.04 seconds

Performance Enhancement of High-Speed TCP Protocols using Pacing (Pacing 적용을 통한 High-Speed TCP 프로토콜의 성능 개선 방안)

  • Choi Young Soo;Lee Gang Won;Cho You Ze;Han Tae Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.12B
    • /
    • pp.1052-1062
    • /
    • 2004
  • Recent studies have pointed out that existing high-speed TCP protocols have a severe unfairness and TCP friendliness problem. As the congestion window achieved by a high-speed TCP connection can be quite large, there is a strong possibility that the sender will transmit a large burst of packets. As such, the current congestion control mechanisms of high-speed TCP can lead to bursty traffic flows in hi인 speed networks, with a negative impact on both TCP friendliness and RTT unfairness. The proposed solution to these problems is to evenly space the data sent into the network over an entire round-trip time. Accordingly, the current paper evaluates this approach with a high bandwidth-delay product network and shows that pacing offers better TCP friendliness and fairness without degrading the bandwidth scalability.

Performance Analysis of Random Early Dropping Effect at an Edge Router for TCP Fairness of DiffServ Assured Service

  • Hur Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.255-269
    • /
    • 2006
  • The differentiated services(DiffServ) architecture provides packet level service differentiation through the simple and predefined Per-Hop Behaviors(PHBs). The Assured Forwarding(AF) PHB proposed as the assured services uses the RED-in/out(RIO) approach to ensusre the expected capacity specified by the service profile. However, the AF PHB fails to give good QoS and fairness to the TCP flows. This is because OUT(out- of-profile) packet droppings at the RIO buffer are unfair and sporadic during only network congestion while the TCP's congestion control algorithm works with a different round trip time(RTT). In this paper, we propose an Adaptive Regulating Drop(ARD) marker, as a novel dropping strategy at the ingressive edge router, to improve TCP fairness in assured services without a decrease in the link utilization. To drop packets pertinently, the ARD marker adaptively changes a Temporary Permitted Rate(TPR) for aggregate TCP flows. To reduce the excessive use of greedy TCP flows by notifying droppings of their IN packets constantly to them without a decrease in the link utilization, according to the TPR, the ARD marker performs random early fair remarking and dropping of their excessive IN packets at the aggregate flow level. Thus, the throughput of a TCP flow no more depends on only the sporadic and unfair OUT packet droppings at the RIO buffer in the core router. Then, the ARD marker regulates the packet transmission rate of each TCP flow to the contract rate by increasing TCP fairness, without a decrease in the link utilization.

A Fair Scalable Inter-Domain TCP Marker for Multiple Domain DiffServ Networks

  • Hur, Kyeong;Eom, Doo-Seop
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.338-350
    • /
    • 2008
  • The differentiated services (DiffServ) is proposed to provide packet level service differentiations in a scalable manner. To provide an end-to-end service differentiation to users having a connection over multiple domains, as well as a flow marker, an intermediate marker is necessary at the edge routers, and it should not be operated at a flow level due to a scalability problem. Due to this operation requirement, the intermediate marker has a fairness problem among the transmission control protocol (TCP) flows since TCP flows have intrinsically unfair throughputs due to the TCP's congestion control algorithm. Moreover, it is very difficult to resolve this problem without individual flow state information such as round trip time (RTT) and sending rate of each flow. In this paper, to resolve this TCP fairness problem of an intermediate marker, we propose a fair scalable marker (FSM) as an intermediate marker which works with a source flow three color marker (sf-TCM) operating as a host source marker. The proposed fair scalable marker improves the fairness among the TCP flows with different RTTs without per-flow management. Through the simulations, we show that the FSM can improve TCP fairness as well as link utilization in multiple domain DiffServ networks.

Performance Improvement of TCP Over High-speed Networks (고속 네트워크에서 TCP 성능 개선 기법)

  • Yang, Eun-Ho;Kim, Chong-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1271-1274
    • /
    • 2005
  • Fast long-distance network 에서 기존 TCP 의 혼잡 제어 (congestion control) 알고리즘은 대역폭을 효과적 사용하지 못하는 문제점을 가지고 있다. 대역폭을 효과적으로 사용하기 위해서 TCP 혼잡 제어를 수정한 다양한 프로토콜들이 제안되었다. 이러한 프로토콜들은 디자인 시 주로 bandwidth scalability, TCP friendliness, 그리고 RTT fairness 와 같은 세 가지의 특성을 고려하고 있다. 하지만 제안된 프로토콜들은 어떤 것도 trade-off 관계로 있는 이 세 가지 특성을 동시에 만족시키지 못한다. 본 논문에서는 혼잡 제어 알고리즘의 증가 규칙 (increase rule)에 RTT 를 직접 반영함으로써 위 세가지 요구사항을 동시에 만족시키는 EIMD (Exponential Increase/ Multiplicative Decrease)라고 하는 새로운 TCP 혼잡 제어 알고리즘을 제안한다. EIMD 는 패킷 손실이 없는 한, 지수적으로 윈도우를 증가시켜 효과적으로 대역폭을 사용하면서도, 패킷손실 직전의 윈도우 크기, $W_{max}$ 에 반비례하게 윈도우를 증가시킴으로써 fair share 에 빠르게 수렴할 수 있다는 특성을 갖는다. 모의실험을 통해 제안된 프로토콜이 fast long-distance network 에서 위 4 가지 특성들을 모두 만족하는지 검증한다

  • PDF

A Novel Congestion Control Algorithm for Large BDP Networks with Wireless Links

  • Le, Tuan-Anh;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1482-1484
    • /
    • 2010
  • A new TCP protocol can succeed for large bandwidth delay product when it meets network bandwidth utilization efficiency and fair sharing. We introduce a novel congestion control algorithm which employs queueing delay information in order to calculate the amount of congestion window increment in increase phase, and reduces congestion window to optimal estimated bound as packet loss occurs. Combination of such methods guarantees that the proposal utilizes fully network bandwidth, recovers quickly from packet loss in wireless link, and preserves fairness for competing flows mixed short RTT and long RTT. Our simulations show that features of the proposed TCP meet the desired requirements.

Design and Performance Evaluation of ACA-TCP to Improve Performance of Congestion Control in Broadband Networks (광대역 네트워크에서의 혼잡 제어 성능 개선을 위한 ACA-TCP 설계 및 성능 분석)

  • Na, Sang-Wan;Park, Tae-Joon;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.10 s.352
    • /
    • pp.8-17
    • /
    • 2006
  • Recently, the high-speed Internet users increase rapidly and broadband networks have been widely deployed. However, the current TCP congestion control algorithm was designed for relatively narrowband network environments, and thus its performance is inefficient for traffic transport in broadband networks. To remedy this problem, the TCP having an enhanced congestion control algorithm is required for broadband networks. In this paper, we propose an improved TCP congestion control that can sufficiently utilize the large available bandwidth in broadband networks. The proposed algorithm predicts the available bandwidth by using ACK information and RTT variation, and prevents large packet losses by adjusting congestion window size appropriately. Also, it can rapidly utilize the large available bandwidth by enhancing the legacy TCP algorithm in congestion avoidance phase. In order to evaluate the performance of the proposed algorithm, we use the ns-2 simulator. The simulation results show that the proposed algorithm improves not only the utilization of the available bandwidth but also RTT fairness and the fairness between contending TCP flows better than the HSTCP in high bandwidth delay product network environment.

Performance Lmprovements of Self-Similar Traffic Congestion Control of Multiple Time Scale Under in TCP-MT network (TCP-MT 네트워크에서 다중 시간 간격을 이용한 자기유사성 트래픽 혼잡제어 성능개선)

  • Na Ha-Sun;Kim Moon-Hwan;Ra Sang-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1239-1247
    • /
    • 2005
  • It is important to improve TCP performance in Self-similar TCP network where signalling between the same end nodes through bidirectional traffic routes. In wireless link, the traffic limitation pattern occurred in two or more TCP connections is applied into MPEC video control as multi time-interval congestion control. For TCP update variable, we extend TCP and perform as function call, and we study a method of relating TCP with LTS module controlling with the information type that is overcoming the limit of feedback loop determined by RTT. For comparison, we measure the TCP throughput without LTS and verify the fairness by means of meta control. The improved TCP performance is shown by that the number of connections of traffic congestion control increases when RTT increases.

A Study of Cell delay for ABR service in ATM network (ATM 네트워크에서 ABR 서비스의 셀 지연 방식에 관한 연구)

  • 이상훈;조미령;김봉수
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.9
    • /
    • pp.1163-1174
    • /
    • 2001
  • A general goal of the ATM(Asynchronous Transfer Mode) network is to support connections across various networks. ABR service using EPRCA(Enhanced Proportional Rate Control Algorithm) switch controls traffics in ATM network. EPRCA switch, traffic control method uses variation of the ACR(Allowed Cell Rate) to enhance the utilization of the link bandwidth. However, in ABR(Available Bit Rate) service, different treatments are offered according to different RTTs(Round Trip Times) of connections. To improve the above unfairness, this paper presents ABR DELAY mechanism, in which three reference parameters for cell delay are defined, and reflect on the messages of RM(Resource Management) cells. To evaluate our mechanism, we compare the fairness among TCP connections between ABR DELAY mechanism and ABR RRM mechanism. And also we execute simulations on a simple ATM network model where six TCP connections and a background traffic with different RTTs share the bandwidth of a bottleneck link. The simulation results, based on TCP goodput and efficiency, clearly show that ABR DELAY mechanism improves the fairness among TCP connections.

  • PDF

Adaptive Logarithmic Increase Congestion Control Algorithm for Satellite Networks

  • Shin, Minsu;Park, Mankyu;Oh, Deockgil;Kim, Byungchul;Lee, Jaeyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.8
    • /
    • pp.2796-2813
    • /
    • 2014
  • This paper presents a new algorithm called the adaptive logarithmic increase and adaptive decrease algorithm (A-LIAD), which mainly addresses the Round-Trip Time (RTT) fairness problem in satellite networks with a very high propagation delay as an alternative to the current TCP congestion control algorithm. We defined a new increasing function in the fashion of a logarithm depending on the increasing factor ${\alpha}$, which is different from the other logarithmic increase algorithm adopting a fixed value of ${\alpha}$ = 2 leading to a binary increase. In A-LIAD, the ${\alpha}$ value is derived in the RTT function through the analysis. With the modification of the increasing function applied for the congestion avoidance phase, a hybrid scheme is also presented for the slow start phase. From this hybrid scheme, we can avoid an overshooting problem during a slow start phase even without a SACK option. To verify the feasibility of the algorithm for deployment in a high-speed and long-distance network, several aspects are evaluated through an NS-2 simulation. We performed simulations for intra- and interfairness as well as utilization in different conditions of varying RTT, bandwidth, and PER. From these simulations, we showed that although A-LIAD is not the best in all aspects, it provides a competitive performance in almost all aspects, especially in the start-up and packet loss impact, and thus can be an alternative TCP congestion control algorithm for high BDP networks including a satellite network.

(A New Queue Management Algorithm Improving Fairness of the Internet Congestion Control) (인터넷 혼잡제어에서 공정성 향상을 위한 새로운 큐 관리 알고리즘)

  • 구자헌;최웅철;정광수
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.437-447
    • /
    • 2003
  • In order to reduce the increasing packet loss rates caused by an exponential increase in network traffic, the IETF(Internet Engineering Task Force) is considering the deployment of active queue management techniques such as RED(Random Early Detection) algorithm. However, RED algorithm simple but does not protect traffic from high-bandwidth flows, which include not only flows that fail to use end-to-end congestion control such as UDP flow, but also short round-trip time TCP flows. In this paper, in order to solve this problem, we propose a simple fairness queue management scheme, called AFQM(Approximate Fair Queue Management) algorithm, that discriminate against the flows which submit more packets/sec than is allowed by their fair share. By doing this, the scheme aims to approximate the fair queueing policy Since it is a small overhead and easy to implement, AFQM algorithm controls unresponsive or misbehaving flows with a minimum overhead.