• Title/Summary/Keyword: RTDS

Search Result 158, Processing Time 0.025 seconds

Development of a Real-time Simulation Method for the Utility Application of Superconducting power Devices (PART 1 : HIS Power Cable) (초전도 전력기기의 계통적용을 위한 실시간 시뮬레이션 기법 개발 (PART 1 : 고온초전도 전력 케이블))

  • Kim, Jae-Ho;Park, Min-Won;Park, Dae-Jin;Kang, Jin-Ju;Cho, Jeon-Wook;Sim, Ki-Deok;Yu, In-Keun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1055-1060
    • /
    • 2006
  • High temperature superconducting(HTS) power cable is expected to be used for power transmission lines supplying electric power for densely populated cities in the near future. Since HTS power cable is capable of the high current density delivery with low power loss, the cable size can be compact comparing with the conventional cable whose capacity is same. In this paper, the authors propose the real time simulation method which puts a teal HTS wire into the simulated 22.9 kV utility grid system using Real Time Digital Simulator (RTDS). For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analyzed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better data for installation of HTS power device into utility network.

Study of the Design of Data Acquisition and Analysis Systems for Multi-purpose Regional Energy Systems

  • Lee, Han-Sang;Yoon, Dong-Hee;Jang, Gil-Soo;Park, Jong-Keun;Park, Goon-Cherl
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.16-20
    • /
    • 2010
  • Recently, the smart grid has become a hot issue and interest in related power sources have increased accordingly. The implementation of a smart grid can enable many generation resources to be linked to the power system, including small-scale reactors for the purpose of co-generation. Research on small-scale reactors is being carried out all over the world. Similarly, Korea is also conducting research on multi-purpose regional energy systems using nuclear energy. This paper proposes a real-time data acquisition and analysis system for small-scale reactors, and is known as the REX-10 (Regional Energy rX 10 MVA). This analysis requires real-time simulations for the power system since it needs data communication with a remote REX-10. A RTDS (Real Time Digital Simulator) has been used for the simulation, and a SCADA/HMI system interfaced with the RTDS is proposed for the purpose of monitoring and control of the regional energy system.

Implementation and Experiment Result of Hardware-in-the-Loop Simulation(HILS) System for The Verification of ITER AC/DC Converter Control (ITER AC/DC Converter Control 검증을 위한 Hardware-in-the-Loop Simulation(HILS) System 구축 및 실험)

  • Suh, Jae-Hak;Oh, Jong-Seok;CHOI, Jungwan;SHIN, Hyun-Kook;Cha, Hanju;Park, In-Kwon
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.221-222
    • /
    • 2015
  • ITER AC/DC Converter의 부하는 초전도 코일이며 이에 필요한 컨버터는 총 6종류(2상한:TF, 4상한:PF, CS, VS, CCU/L, CCS)가 있다. 이중 VS 컨버터(${\pm}1050V$, ${\pm}22.5kA$)는 6대가 직렬로 접속되어 운전되고 CS 컨버터(${\pm}1050V$, ${\pm}4.5kA$)는 4대가 직렬로 접속되어 운전한다. 이들 컨버터용 제어기의 개발 단계에서 실 부하상태를 준비하는 것은 어렵기 때문에 $RTDS^{TM}$ (Real Time Digital Simulator)를 이용하여 제어 대상인 High Power 부분과 초전도 코일의 동적 시스템 모델을 HILS(Hardware-in-the-Loop Simulation)로 구축하였다. 본 논문에서는 HILS 구축에 대한 상세한 내용과 이를 활용하여 Control 시스템을 검증한 결과를 서술하였다.

  • PDF

Development of a Real-Time Simulation Algorithm of HTS Power Cable using HTS Wire (고온초전도선을 이용한 초전도전력케이블의 실시간 시뮬레이션 알고리즘 개발)

  • Kim Jae-Ho;Park Min-Won;Cho Jeon-Wook;Sim Ki-Deok;Yu In-Keun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.3
    • /
    • pp.54-58
    • /
    • 2006
  • In this paper, authors developed a real-time simulation algorithm for the power device application of HTS(High Temperature Superconducting) wire by using Real Time Digital Simulator(RTDS). At present, in order to extend the power capacity of some area where has a serious problem of power quality. especially metropolitan complex city, there are so many problems such as right of way for power line routes. space for downtown substations. and the environmental protection, etc. HTS technology can be useful to overcome this problem. Recently, according to the advanced HTS technology, the power application is being researched well. Simulation is required for safety before installation of HTS power cable, a fabrication model used at the power system simulation. This paper describes a real time digital simulation method for the application of HTS wire to power device. For the simulation analysis, test sample of HTS wire was actually manufactured. And the transient phenomenon of the HTS wire was analysed in the simulated utility power grid. This simulation method is the world first trial in order to obtain much better information for installation of HTS power device into a utility network.

Protective Relay Modeling of Generator Using Real Time Digital Simulator (RTDS를 이용한 발전기 보호계전기 모델링)

  • Cho, Y.S.;Lee, W.H.;Shin, J.H.;Kim, T.K.;Jang, G.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.155-157
    • /
    • 2005
  • Digital relays have numerous advantages over traditional analog relays, such as the ability to accomplish what is difficult or impossible using analog relays. This paper presents the protective relay modeling of generator using Real Time Digital Simulator(RTDS). The developed model is applied to the test system and the simulation results are evident that they performs satisfactory.

  • PDF

Testing Items Change on Characteristics of Protective relays (보호계전기 특성시험기술의 시험항목 변화)

  • Jang, Byung-Tae;Lee, Nam-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.161-162
    • /
    • 2008
  • The steady state performance test for the digital protective relay using general relay test equipment has been main test methods. Because of the development of advanced power system testing equipments, dynamic performance test has been carried out additionally using a digital simulator such as RTDS(Real Time Digital Simulator). For the case of newly adopted digital protective relay with IEC 61850 and network, performance testing items need supplementing. This report displays testing items change according to newly protective relay.

  • PDF

BEF Detection Algorithm to Improve Reliability of Three-Wire-Unigrounded Distribution Line (3선-단접지배전선로의 신뢰도개선을 위한 BEF 검출 알고리즘)

  • Wan-Ki Min;Myeong-Ho Yoo;Seong-Hwa Kang
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.3
    • /
    • pp.166-172
    • /
    • 1997
  • The BEF on the radial distribution line refers to a class of ground faults in which the load-side power line only is grounded, with the distribution line broken into two parts, the source-side and the load-side. Because its mechanism is remarkably different from that of other earth faults, the fault current is very low, and then difficult to detect the BEF. Thus, it is necessary to analyze its properties and to find an appropriate method that can economically protect the BEF of nonautomation area in the substation. As a result of analyzing the BEF data obtained by the RTDS, EMTP simulation, and the field test data of ETSA, we believe that it is the dominant factor in distinguishing the BEF from normal conditions by a criterion value that is appropriately handled from the zero-sequence current. Thus, with this criterion value, a BEF detecting algorithm is constructed which measures the variations of the zero-sequence current and processes then properly so as to make the fault decision. To prove the accuracy of this algorithm, it is compared with the field test data of ETSA under various conditions. The results show that the proposed algorithm is accurate.

  • PDF

An Immune Algorithm based Multiple Energy Carriers System (면역알고리즘 기반의 MECs (에너지 허브) 시스템)

  • Son, Byungrak;Kang, Yu-Kyung;Lee, Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.23-29
    • /
    • 2014
  • Recently, in power system studies, Multiple Energy Carriers (MECs) such as Energy Hub has been broadly utilized in power system planners and operators. Particularly, Energy Hub performs one of the most important role as the intermediate in implementing the MECs. However, it still needs to be put under examination in both modeling and operating concerns. For instance, a probabilistic optimization model is treated by a robust global optimization technique such as multi-agent genetic algorithm (MAGA) which can support the online economic dispatch of MECs. MAGA also reduces the inevitable uncertainty caused by the integration of selected input energy carriers. However, MAGA only considers current state of the integration of selected input energy carriers in conjunctive with the condition of smart grid environments for decision making in Energy Hub. Thus, in this paper, we propose an immune algorithm based Multiple Energy Carriers System which can adopt the learning process in order to make a self decision making in Energy Hub. In particular, the proposed immune algorithm considers the previous state, the current state, and the future state of the selected input energy carriers in order to predict the next decision making of Energy Hub based on the probabilistic optimization model. The below figure shows the proposed immune algorithm based Multiple Energy Carriers System. Finally, we will compare the online economic dispatch of MECs of two algorithms such as MAGA and immune algorithm based MECs by using Real Time Digital Simulator (RTDS).

Field Implementation of Voltage Management System (VMS) into Jeju Power System in Korea

  • Shin, Jeonghoon;Nam, Suchul;Song, Jiyoung;Lee, Jaegul;Han, Sangwook;Ko, Baekkyung;An, Yongho;Kim, Taekyun;Lee, Byungjun;Baek, Seungmook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.719-728
    • /
    • 2015
  • This paper presents the results of field tests on Voltage Management System (VMS) using hybrid voltage control, which utilizes coordinated controls of various reactive power resources such as generators, FACTS and switched shunt devices to regulate the pilot bus voltage in a voltage control area. It also includes the results of performance test on RTDS-based test bed in order to validate the VMS before installing it in Jeju power system. The main purpose of the system is adequately to regulate the reactive power reserve of key generators in a normal condition with coordination of discrete shunt devices such as condensers and reactors so that the reserves can avoid voltage collapse in emergency state in Jeju system. Field tests in the automatic mode of VMS operation are included in steady-states and transient states. Finally, by the successful operation of VMS in Jeju power system, the VMS is proved to effectively control system voltage profiles in steady-state condition, increase system MVAR reserves and improve system reliability for pre- and post-contingency.