• Title/Summary/Keyword: RTD-2000

Search Result 16, Processing Time 0.021 seconds

The fabrication of ultra-low consumption power type micro-heaters using SOI and trenche structures (SOI와 드랜치 구조를 이용한 초저소비전력형 미세발열체의 제작)

  • 정귀상;이종춘;김길중
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.569-572
    • /
    • 2000
  • This paper presents the optimized fabrication and thermal characteristics of micro-heaters for thermal MEMS applications using a SDB SOI substrate. The micro-heater is based on a thermal measurement principle and contains for thermal isolation regions a 10$\mu\textrm{m}$ thick silicon membrane with oxide-filled trenches in the SOI membrane rim. The micro-heater was fabricated with Pt-RTD(Resistance Thermometer Device)on the same substrate by using MgO as medium layer. The thermal characteristics of the micro-heater with the SOI membrane is 280$^{\circ}C$ at input Power 0.9 W; for the SOI membrane with 10 trenches, it is 580$^{\circ}C$ due to reduction of the external thermal loss. Therefore, the micro-heater with trenches in SOI membrane rim provides a powerful and versatile alternative technology for improving the performance of micro thermal sensors and actuators.

  • PDF

The Characteristics of Flow Sensor Fabricated by MgO Medium Layer (MgO 매개층을 이용하여 제작된 유량센서의 특성)

  • Hong, Seok-Woo;Jang, Soo;Lee, Jong-Chun;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3319-3321
    • /
    • 1999
  • Pt-RTD and Micro Heater was fabricated by using MgO as medium layer in order to improve adhesion of Pt thin-films to $SiO_2$ layer, MgO layer improved adhesion of Pt thin-films to $SiO_2$ layer without any chemical reactions to Pt thin-films under high annealing temperatures, In the analysis of properties of Pt-RTD, TCR value had 3927 $ppm/^{\circ}C$ and liner in the temperature range of $25-400^{\circ}C$. The temperature of Pt micro-heater had up to $400^{\circ}C$ with 1.5watts of the heating power. In investigating output characteristics of flow sensors output voltages increased as gas flow rate and its conductivity increased due to increase of heat-loss from sensor to external. Output voltage was 82 mV at $N_2$ flow rate of 2000sccm, heating power of 1.2W.

  • PDF

On-Line Insulation Diagnosis Techniques for Stator Winding of Rotating Machines (회전기 고정자 권선에서의 운전 중 절연열화 진단기법)

  • 윤대희;황돈하;신병철;김용주;이광식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.89-93
    • /
    • 2000
  • Recently many research activities on the diagnosis of stator winding insulation of large rotating machines have been reported. Capacitive couplers are widely used as sensors for on-line partial discharge (PD) measurement of high voltage rotating machines. This paper presents laboratory test to compare Stator Slot Coupler (SSC), Resistance Temperature Detector (RTD), 80 [pF] coupler and 500 [pF] coupler for on-line PD measurement of rotating machines. And a novel on-line monitoring system for an insulation diagnosis is proposed.

  • PDF

Fabrication of Pt Thin-film Type Microheater for Thermal Microsensors and Its Characteristics (열형 마이크로센서용 백금박막형 미세발열체의 제작과 그 특성)

  • 정귀상;홍석우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.509-513
    • /
    • 2000
  • The physical and electrical characteristics of MgO and Pt thin-films on it deposited by reactive sputtering and rf magnetron sputtering respectively were analyzed with annealing temperature and time by four point probe SEM and XRD. Under annealing conditions of 100$0^{\circ}C$ and 2 hr, MgO thin-film had the properties of improving Pt adhesion to SiO$_2$and insulation without chemical reaction to Pt thin-film and the sheet resistivity and the resistivity of Pt thin-film deposited on it were 0.1288 Ω/ and 12.88 $\mu$$\Omega$.cm respectively. We made Pt resistance pattern on SiO$_2$/Si substrate by life-off method and fabricated Pt thin-film type microheater for thermal microsensors by Pt-wire Pt-paste and SOG(spin-on-glass). In the temperature range of 25~40$0^{\circ}C$ we estimated TCR(temperature coefficient of resistance) and resistance ratio of thin-film type Pt-RTD(resistance thermometer device). We obtained TCR value of 3927 ppm/$^{\circ}C$ close to the bulk Pt value. Resistance values were varied linearly within the range of the measurement temperature. The thermal characteristics of fabricated thin-films type Pt micorheater were analyzed with Pt-RTD integrated on the same substrate. The heating temperature of Pt microheater could be up to 40$0^{\circ}C$ with 1.5 watts of the heating power.

  • PDF

Characteristics Analysis of On-Line Partial Discharge Measurement Sensor for Insulation Diagnosis of HV Rotating Machines (고압 회전기의 절연열화 진단을 위한 운전중 부분방전 측정 센서의 특성분석)

  • Yoon, Dae-Hee;Hwang, Don-Ha;Kim, Yong-Joo;Lee, Kwang-Sik;Kim, Hee-Dong;Kim, Jeong-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1909-1911
    • /
    • 2000
  • Recently many research activities on the diagnosis of stator winding insulation of large rotating machines have been reported. Capacitive couplers are widely used as sensors for on-line partial discharge (PD) measurement of high voltage rotating machines. This paper presents laboratory test to compare Stator Slot Coupler (SSC), Resistance Temperature Detector (RTD), 80 [pF] coupler and 500 [pF] coupler for on-line PD measurement of rotating machines.

  • PDF

Integrated Rotary Genetic Analysis Microsystem for Influenza A Virus Detection

  • Jung, Jae Hwan;Park, Byung Hyun;Choi, Seok Jin;Seo, Tae Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.88-89
    • /
    • 2013
  • A variety of influenza A viruses from animal hosts are continuously prevalent throughout the world which cause human epidemics resulting millions of human infections and enormous industrial and economic damages. Thus, early diagnosis of such pathogen is of paramount importance for biomedical examination and public healthcare screening. To approach this issue, here we propose a fully integrated Rotary genetic analysis system, called Rotary Genetic Analyzer, for on-site detection of influenza A viruses with high speed. The Rotary Genetic Analyzer is made up of four parts including a disposable microchip, a servo motor for precise and high rate spinning of the chip, thermal blocks for temperature control, and a miniaturized optical fluorescence detector as shown Fig. 1. A thermal block made from duralumin is integrated with a film heater at the bottom and a resistance temperature detector (RTD) in the middle. For the efficient performance of RT-PCR, three thermal blocks are placed on the Rotary stage and the temperature of each block is corresponded to the thermal cycling, namely $95^{\circ}C$ (denature), $58^{\circ}C$ (annealing), and $72^{\circ}C$ (extension). Rotary RT-PCR was performed to amplify the target gene which was monitored by an optical fluorescent detector above the extension block. A disposable microdevice (10 cm diameter) consists of a solid-phase extraction based sample pretreatment unit, bead chamber, and 4 ${\mu}L$ of the PCR chamber as shown Fig. 2. The microchip is fabricated using a patterned polycarbonate (PC) sheet with 1 mm thickness and a PC film with 130 ${\mu}m$ thickness, which layers are thermally bonded at $138^{\circ}C$ using acetone vapour. Silicatreated microglass beads with 150~212 ${\mu}L$ diameter are introduced into the sample pretreatment chambers and held in place by weir structure for construction of solid-phase extraction system. Fig. 3 shows strobed images of sequential loading of three samples. Three samples were loaded into the reservoir simultaneously (Fig. 3A), then the influenza A H3N2 viral RNA sample was loaded at 5000 RPM for 10 sec (Fig. 3B). Washing buffer was followed at 5000 RPM for 5 min (Fig. 3C), and angular frequency was decreased to 100 RPM for siphon priming of PCR cocktail to the channel as shown in Figure 3D. Finally the PCR cocktail was loaded to the bead chamber at 2000 RPM for 10 sec, and then RPM was increased up to 5000 RPM for 1 min to obtain the as much as PCR cocktail containing the RNA template (Fig. 3E). In this system, the wastes from RNA samples and washing buffer were transported to the waste chamber, which is fully filled to the chamber with precise optimization. Then, the PCR cocktail was able to transport to the PCR chamber. Fig. 3F shows the final image of the sample pretreatment. PCR cocktail containing RNA template is successfully isolated from waste. To detect the influenza A H3N2 virus, the purified RNA with PCR cocktail in the PCR chamber was amplified by using performed the RNA capture on the proposed microdevice. The fluorescence images were described in Figure 4A at the 0, 40 cycles. The fluorescence signal (40 cycle) was drastically increased confirming the influenza A H3N2 virus. The real-time profiles were successfully obtained using the optical fluorescence detector as shown in Figure 4B. The Rotary PCR and off-chip PCR were compared with same amount of influenza A H3N2 virus. The Ct value of Rotary PCR was smaller than the off-chip PCR without contamination. The whole process of the sample pretreatment and RT-PCR could be accomplished in 30 min on the fully integrated Rotary Genetic Analyzer system. We have demonstrated a fully integrated and portable Rotary Genetic Analyzer for detection of the gene expression of influenza A virus, which has 'Sample-in-answer-out' capability including sample pretreatment, rotary amplification, and optical detection. Target gene amplification was real-time monitored using the integrated Rotary Genetic Analyzer system.

  • PDF