• Title/Summary/Keyword: RTD sensor

Search Result 41, Processing Time 0.028 seconds

Fabrication of Micro-heaters Using MgO as Medium Layer and It`s Application for Micro-Flowsensors (매개층 산화마그네슘막을 이용한 백금박막 미세발열체의 제작과 마이크로 유량센서에의 응용)

  • 홍석우;조정복;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.358-361
    • /
    • 1999
  • This paper describes on the fabrication and characteristics of hot-film type micro-flowsensors integrated with Pt-RTD\`s and micro-heater on the Si substrate, in which MgO thin-films were used as medium layer in order to improve adhesion of Pt thin-films to SiO$_2$ layer The MgO layer improved adhesion of Pt thin-films to SiO$_2$` layer without any chemical reactions to Pt thin-films under high as gas flow rate and its conductivity increased due to increase of heat-loss from sensor to external. Output voltage was 82 mV at N2 flow rate of 2000 sccm/min, heating power of 1.2W. The respons time was about 100 msec when input flow was step-input

  • PDF

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

Characteristics of RFCT for Partial Discharge Measurement in the Stator Winding of Rotating Machines (회전기 고정자 권선의 부분방전 측정용 RFCT 특성)

  • Kang, Dong-Sik;Yoon, Dae-Hee;Hwang, Don-Ha;Kim, Yong-Joo;Chang, Ki-Chan;Song, Sang-Ock
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1616-1618
    • /
    • 2001
  • In recent the on-line partial discharge (PD) measurement using sensors, such as EMC, SSC, RTD and RFCT, as an indicator of stator winding insulation condition has been developed. RFCT sensor was placed arounding a grounding lead of surge capacitor to detecting PD. Trend of PD magnitude/phase angle/pulse number over time are useful parameter to diagnosis aging state. We have developed Radio Frequency Current Transformer(RFCT) sensor which is suitable for PD diagnostic measurement in 6.6kV rotating machines. In this paper, we describe the characteristics of RFCT sensor, such as frequency and PD magnitude using 6.6 kV model stator winding in Lab.

  • PDF

A properties and the fabrication of ZnO-Si system CO gas sensor with low power consumption (절전형 ZnO-Si계 CO 가스 센서 제작과 그 특성)

  • Yi, S.H.;Hung, H.K.;Kim, J.K.;Chang, B.H.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.324-326
    • /
    • 1997
  • Low power ZnO-Si gas sensor below 500 mW at operating temperature has been fabricated by using micromachining technique. I-V measurement shows the power consumption of 260 mW at $400^{\circ}C$ The sensitivity of the sensor was 45 percent at operating temperature of $350^{\circ}C$(230 mW) with 1,000 ppm CO gas atmosphere. The response and the recovery time found out to be 94 sec and 180 sec, respectively, when CO gas was used. In order to measure the exact temperature of the gas sensing layer, Pt/Cr bilayer-RTD was used in this experiment.

  • PDF

The Fabrication of Micro-Heaters with Low-Power Consumption Using SOI and Trench Structures

  • Chung, Gwiy-Sang;Hong, Seok-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.197-201
    • /
    • 2002
  • This paper presents optimized design, fabrication and thermal characteristics of micro-heaters for thermal MEMS (micro electro mechanical system) applications using SOI and trench structures. The micro-heaters are based on a thermal measurement principle and contains thermal isolation regions of 10 ${\mu}m$-thick Si membranes consisting of oxide-filled trenches in the SOI membrane rim. The micro-heaters were fabricated with Pt-RTD on the same substrate via MgO buff layer between Pt thin-film and $SiO_2$ layer. The thermal characteristics of micro-heater with trench-free SOI membrane structure was $280^{\circ}C$ at input power 0.9 W; in the presence of 10 trenches, it was $580^{\circ}C$ due to reduction of the external thermal loss. Therefore, a micro-heater with trenches in SOI membrane rim structure provides a powerful and versatile alternative technology for enhancing the performance of micro-thermal sensors and actuators.

  • PDF

Characteristics of Indium-Tin-Oxide Electrode for Continuous-flow PCR Chip (연속흐름 중합효소연쇄반응칩 제작을 위한 인듐 산화막 전극의 특성분석)

  • Joung, Seung-Ryong;Kim, Jun-Hyeok;Yi, In-Je;Kang, C.J.;Kim, Yong-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.561-565
    • /
    • 2007
  • We propose glass and PDMS (polydimethylsiloxane) chips for DNA amplification with continuous-flow PCR (polymerase chain reaction). The PDMS microchannel was fabricated using a negative molding method for sample injection. Three heaters and sensors of ITO (indium-tin-oxide) thin films were fabricated on glass chip. ITO heaters and sensors were calibrated accurately for the temperature control of the liquid flow. ITO heater generated stable heat versus applied power. ITO sensor resistance was changed linearly versus temperature increase as a RTD (resistance temperature detector) sensor. As a result, we enable precision temperature control of continuous-flow PCR chip. Using the continuous-flow PCR chip DNA plasmid pKS-GFP 720 bp was successfully amplified.

Fabrication of micro heaters with uniform-temperature area on poly 3C-SiC membrane and its characteristics (다결정 3C-SiC 멤브레인 위에 균일한 온도분포를 갖는 마이크로 히터의 제작과 그 특성)

  • Chung, Gwiy-Sang;Jeong, Jae-Min
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.349-352
    • /
    • 2009
  • This paper describes the fabrication and characteristics of micro heaters built on AlN($0.1{\mu}m$)/3C-SiC($1{\mu}m$) suspended membranes by surface micromachining technology. In this work, 3C-SiC and AlN films are used for high temperature environments. Pt thin film was used as micro heaters and temperature sensor materials. The resistance of temperature sensor and the power consumption of micro heaters were measured and calculated. The heater is designed for operating temperature up to about $800^{\circ}C$ and can be operated at about $500^{\circ}C$ with a power of 312 mW. The thermal coefficient of the resistance(TCR) of fabricated Pt resistance of temperature detector(RTD)'s is 3174.64 ppm/$^{\circ}C$. A thermal distribution measured by IR thermovision is uniform on the membrane surface.

Fieldbus Communication Network Requirements for Application of Harsh Environments of Nuclear Power Plant (원전 극한 환경적용을 위한 필드버스 통신망 요건)

  • Cho, Jai-Wan;Lee, Joon-Koo;Hur, Seop;Koo, In-Soo;Hong, Seok-Boong
    • Journal of Information Technology Services
    • /
    • v.8 no.2
    • /
    • pp.147-156
    • /
    • 2009
  • As the result of the rapid development of IT technology, an on-line diagnostic system using the field bus communication network coupled with a smart sensor module will be widely used at the nuclear power plant in the near future. The smart sensor system is very useful for the prompt understanding of abnormal state of the key equipments installed in the nuclear power plant. In this paper, it is assumed that a smart sensor system based on the fieldbus communication network for the surveillance and diagnostics of safety-critical equipments will be installed in the harsh-environment of the nuclear power plant. It means that the key components of fieldbus communication system including microprocessor, FPGA, and ASIC devices, are to be installed in the RPV (reactor pressure vessel) and the RCS (reactor coolant system) area, which is the area of a high dose-rate gamma irradiation fields. Gamma radiation constraints for the DBA (design basis accident) qualification of the RTD sensor installed in the harsh environment of nuclear power plant, are typically on the order of 4 kGy/h. In order to use a field bus communication network as an ad-hoc diagnostics sensor network in the vicinity of the RCS pump area of the nuclear power plant, the robust survivability of IT-based micro-electronic components in such intense gamma-radiation fields therefore should be verified. An intelligent CCD camera system, which are composed of advanced micro-electronics devices based on IT technology, have been gamma irradiated at the dose rate of about 4.2kGy/h during an hour UP to a total dose of 4kGy. The degradation performance of the gamma irradiated CCD camera system is explained.

A Study on the Electrical Properties of Pt Thin film RTD for Temperature Sensor (온도센서용 Pt박막 측온저항체의 전기적 특성에 관한 연구)

  • 문중선;정광진;최성호;조동율;천희곤
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • Pt thin film of about 7000$\AA$ thickness was deposited on the alumina substrate using DC Magnetron Sputter and the characteristics of the film for temperature sensor were investigated. When film of about 7000$\AA$ thickness was deposited at working gas pressure of $2.0{\times}10^{-3}$torr, sputtering power of 50W, substrate temperature of $350^{\circ}C$(Ts), sheet resistance(Rs), resistivity($\rho$) and temperature coefficient of resistivity(TCR) of the film were respectively 0.39$\Omega$/$\square$, 27.60$\mu\Omega$-cm and $3350 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min in hydrogen ambient, Rs, $\rho$ and TCR were respectively 0.236$\Omega$/$\square$, 15.18$\mu\Omega$-cm and 3716 ppm/$3716 ppm/^{\circ}C$. When working gas of 15sccm oxygen and 100sccm Argon were used, Rs, $\rho$ and TCR were respectively 0.335$\Omega$/$\square$, 22.45$\mu\Omega$-cm and $3427 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min, Rs, $\rho$and TCR were respectively 0.224/$\Omega$$\square$, 14$\mu\Omega$-cm and $3760 ppm/^{\circ}C$ and the characteristics of the film were much improved.

  • PDF

The Study on Deposition and Characteristics of Pt-Co Alloy Thin Films for RTD Temperature Sensors (측온저항체 온도센서용 Pt-Co 합금박막의 증착과 특성에 관한 연구)

  • Chung, Gwiy-Sang;Noh, Sang-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on $Al_{2}O_{3}$ substrate by magnetron cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the $Al_{2}O_{3}$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions, the input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : $4.4\;W/cm^{2}$, Co : $6.91\;W/cm^{2}$, working vacuum of 10 mTorr and annealing conditions of $800^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was $15{\mu}{\Omega}{\cdot}cm$ and $0.5{\Omega}/{\square}$, respectively and the TCR value of Pt-Co alloy thin films with thickness of $3000{\AA}$ were $3740ppm/^{\circ}C$ in the temperature range of $25{\sim}600^{\circ}C$. These results indicate that Pt-Co alloy thin films have potentiality for the RTD temperature sensors.

  • PDF