• Title/Summary/Keyword: RT-qPCR assay

Search Result 129, Processing Time 0.025 seconds

MicroRNA-101 Inhibits Cell Proliferation, Invasion, and Promotes Apoptosis by Regulating Cyclooxygenase-2 in Hela Cervical Carcinoma Cells

  • Huang, Fei;Lin, Chen;Shi, Yong-Hua;Kuerban, Gulinar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5915-5920
    • /
    • 2013
  • Aim: Although aberrant miRNA expression has been documented, altered miR-101 expression in cervical cancer and its carcinogenic effects and mechanisms remain unexplored. The aim of our study was to investigate the role of miR-101 alteration in cervical carcinogenesis. Methods: Expression of miR-101 was examined by quantitative real-time reverse transcriptase PCR (qRT-PCR) in Hela cells. After modulating miR-101 expression using miR-101 mimics, cell growth, apoptosis and proliferation, and migration were tested separately by MTT or flow cytometry and cell wound healing assay and protein expression was detected by qRT-PCR. The expression of COX-2 in Hela cell was also examined by immunohistochemical staining and the correlation with miR-101 expression was analysed. Results: The miR-101 demonstrated significantly low expression in Hela cell. When we transfected miR-101 mimics into Hela cells, the modulation of miR-101 expression remarkably influenced cell proliferation, cycling and apoptosis: 1) The expression of microRNA-101 tended to increase after transfection; 2) Overexpression of miR-101 was able to promote cell apoptosis, the apoptosis rate being markedly higher (97.6%) than that seen pre-transfection (12.2%) (P<0.05); 3) The miR-101 negatively regulates cell migration and invasion, scratch results being lower ($42.7um{\pm}2um$) than that observed pre-transfection ($181.4um{\pm}2um$); 4) miRNA-101 inhibits the proliferation of Hela cells as well as the level of COX-2 protein, which was negatively correlated with miR-101 expression. Conclusions: Overexpression of miR-101 has obvious inhibitory effects on cell proliferation, migration and invasion. Thus reduced miR-101 expression could participate in the development of cervical cancer at least partly through loss of inhibition of target gene COX-2, which probably occurs in a relative late phase of carcinogenesis. Our data suggest an important role of miR-101 in the molecular etiology of cancer and indicate potential application of miR-101 in cancer therapy.

MicroRNA-23a: A Novel Serum Based Diagnostic Biomarker for Lung Adenocarcinoma

  • Lee, Yu-Mi;Cho, Hyun-Jung;Lee, Soo-Young;Yun, Seong-Cheol;Kim, Ji-Hye;Lee, Shin-Yup;Kwon, Sun-Jung;Choi, Eu-Gene;Na, Moon-Jun;Kang, Jae-Ku;Son, Ji-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Background: MicroRNAs (miRNAs) have demonstrated their potential as biomarkers for lung cancer diagnosis. In recent years, miRNAs have been found in body fluids such as serum, plasma, urine and saliva. Circulating miRNAs are highly stable and resistant to RNase activity along with, extreme pH and temperatures in serum and plasma. In this study, we investigated serum miRNA profiles that can be used as a diagnostic biomarker of non-small cell lung cancer (NSCLC). Methods: We compared the expression profile of miRNAs in the plasma of patients diagnosed with lung cancer using an miRNA microarray. The data from this assay were validated by quantitative real-time PCR (qRT-PCR). Results: Six miRNAs were overexpressed and three miRNAs were underexpressed in both tissue and serum from squamous cell carcinoma (SCC) patients. Sixteen miRNAs were overexpressed and twenty two miRNAs were underexpressed in both tissue and serum from adenocarcinoma (AC) patients. Of the four miRNAs chosen for qRT-PCR analysis, the expression of miR-23a was consistent with microarray results from AC patients. Receiver operating characteristic (ROC) curve analyses were done and revealed that the level of serum miR-23a was a potential marker for discriminating AC patients from chronic obstructive pulmonary disease (COPD) patients. Conclusion: Although a small number of patients were examined, the results from our study suggest that serum miR-23a can be used in the diagnosis of AC.

Study on the Potential of Development of Materials for Bone Disease Improvement of Cudrania tricuspidata Leaf and Achyranthes japonica Nakai Complex (꾸지뽕나무 잎과 우슬 복합물의 골 질환 개선 소재 개발가능성에 대한 연구)

  • Cheong, Kil-Ho;Kim, Dong-Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.35 no.5
    • /
    • pp.169-176
    • /
    • 2021
  • This study was conducted to suggest the Cudrania tricuspidata leaf and Achyranthes japonica Nakai Complex (CAC) possibility of use as a functional natural material for improving bone disease. Cudrania tricuspidata leaf and Achyranthes japonica Nakai were mixed in the same amount, extracted with hot water, and then powdered and used in the study. After, the cytotoxicity of CAC for osteoblasts (MG63 cell), osteoclasts (differentiated RAW264.7 cell), and macrophages (RAW264.7 cell) were evaluated by MTT assay, and ALP assay and TRAP assay were performed to confirm the differentiation capacity of osteoblasts and osteoclasts, respectively. In addition, the anti-inflammatory effect in macrophages was evaluated by ELISA, qRT-PCR, and western blot assay. CAC did not proliferated osteoblasts and osteoclasts, but increased ALP activity against osteoblasts differentiation and decreased TRAP activity against osteoclasts differentiation. CAC did not proliferated macrophages but decreased nitric oxide production. Also, decreased NOS2, IL1B, IL6, PTGS2, and TNFA gene expression, and JNK and p38 protein phosphorylation in a concentration-dependent manner, but ERK protein phosphorylation was not changed. As a result, CAC increased the differentiation and activation of osteoblasts, inhibited the differentiation and activation of osteoclasts, and regulated the expression of inflammatory cytokines in macrophages. Therefore, it is thought that CAC can be used as a functional natural material that prevents bone disease and has an anti-inflammatory effect.

Down-regulation of microRNA-382-5p reduces neuropathic pain by targeting regulation of dual specificity phosphatase-1

  • Anjie Xu;Huili Shen;Shasha Mei;Zhongwei Wang;Qiuyi Xie;Huaqing Cui;Yunchao Chu;Baihe Feng
    • The Korean Journal of Pain
    • /
    • v.37 no.4
    • /
    • pp.320-331
    • /
    • 2024
  • Background: MicroRNA (miRNA) plays a crucial role in neuropathic pain (NP) by targeting mRNAs. This study aims to analyze the regulatory function and mechanism of miR-382-5p/dual specificity phosphatase-1 (DUSP1) axis in NP. Methods: We utilized rats with chronic constriction injury (CCI) of the sciatic nerve as the NP model. The levels of miR-382-5p and DUSP1 were reduced by intrathecal injection of lentiviral interference vectors targeting miR-382-5p and DUSP1. The mRNA levels of miR-382-5p and DUSP1 in the dorsal root ganglions (DRGs) were measured by RT-qPCR assay. The pain behavior was evaluated by mechanical nociceptive sensitivity and thermal nociceptive sensitivity. The expression levels of interleukin-6 (IL)-6, IL-1β, and tumor necrosis factor-α in the DRGs were analyzed by ELISA assay. The targeting relationship between miR-382-5p and DUSP1 was verified by DLR assay and RIP assay. Results: Compared to the Sham group, the CCI rats exhibited higher levels of miR-382-5p and lower levels of DUSP1. Overexpression of miR-382-5p significantly decreased DUSP1 levels. Reducing miR-382-5p levels can lower the mechanical nociceptive sensitivity and thermal nociceptive sensitivity of CCI rats and inhibit the over-activation of pro-inflammatory factors. Reduced miR-382-5p levels decreased NP in CCI rats. DUSP1 is the target of miR-382-5p, and down-regulation of DUSP1 reverses the inhibitory effect of reduced miR-382-5p levels on NP. Conclusions: Down-regulation of miR-382-5p inhibits the over-activation of pro-inflammatory factors by targeting and regulating the expression of DUPS1, thereby alleviating NP.

Korean Red Ginseng water extract inhibits cadmium-induced lung injury via suppressing MAPK/ERK1/2/AP-1 pathway

  • Mitra, Ankita;Rahmawati, Laily;Lee, Hwa Pyoung;Kim, Seung A.;Han, Chang-Kyun;Hyun, Sun Hee;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.690-699
    • /
    • 2022
  • Background: Few studies reported the therapeutic effect of Korean Red Ginseng (KRG) in lung inflammatory diseases. However, the anti-inflammatory role and underlying molecular in cadmium-induced lung injury have been poorly understood, directly linked to chronic lung diseases (CLDs): chronic obstructive pulmonary disease (COPD), cancer etc. Therefore, in this study we aim to investigate the therapeutic activities of water extract of KRG (KRG-WE) in mouse cadmium-induced lung injury model. Method: The anti-inflammatory roles and underlying mechanisms of KRG-WE were evaluated in vitro under cadmium-stimulated lung epithelial cells (A549) and HEK293T cell line and in vivo in cadmium-induced lung injury mouse model using semi-quantitative polymerase chain reaction (RT-PCR), quantitative real-time PCR (qPCR), luciferase assay, immunoblotting, and FACS. Results: KRG-WE strongly ameliorated the symptoms of CdSO4-induced lung injury in mice according to total cell number in bronchoalveolar lavage fluid (BALF) and severity scores as well as cytokine levels. KRG-WE significantly suppressed the upregulation of inflammatory signaling comprising mitogen-activated protein kinases (MAPK) and their upstream enzymes. In in vitro study, KRG-WE suppressed expression of interleukin (IL)-6, matrix metalloproteinase (MMP)-2, and IL-8 while promoting recovery in CdSO4-treated A549 cells. Similarly, KRG-WE reduced phosphorylation of MAPK and c-Jun/c-Fos in cadmium-exposed A549 cells. Conclusion: KRG-WE was found to attenuate symptoms of cadmium-induced lung injury and reduce the expression of inflammatory genes by suppression of MAPK/AP-1-mediated pathway.

Effects of Ethanol Extracts of Anemarrhena asphodeloides on Skin Barrier Function by Inflammation (지모 주정 추출물이 염증으로 손상된 피부장벽 기능에 미치는 영향)

  • Jeong, Mi-Rim;Lee, Kyou-Young;Hong, Chul-Hee
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.31 no.2
    • /
    • pp.11-23
    • /
    • 2018
  • 목적 : 본 연구에서는 $TNF-{\alpha}$$IFN-{\gamma}$로 자극한 인간피부각질형성세포 (HaCaT keratinocytes) 모델을 사용하여 지모가 피부장벽 기능에 미치는 영향을 알아보고자 하였다. 방법 : MTT assay를 통하여 지모 주정(70% 에탄올) 추출물 (EAA)이 HaCaT keratinocytes의 세포생존율에 미치는 영향을 확인하였으며 wound healing assay를 통해 EAA가 HaCaT 세포의 이주 능력에 영향을 주는지 관찰하였다. 또한 western blot analysis와 qRT-PCR을 통하여 EAA가 $TNF-{\alpha}/IFN-{\gamma}$로 자극한 HaCaT 세포에서 iNOS의 단백질 발현 및 IL-4, IL-13, IL-6의 mRNA 발현, filaggrin의 단백질과 mRNA 발현에 미치는 영향을 조사하였다. 결과 : EAA는 처리 농도 $500{\mu}g/ml$까지 HaCaT keratinocytes의 세포생존율에 영향을 미치지 않았다. EAA는 wound healing assay에서 HaCaT 세포의 이주 능력을 증가시켰으며, $TNF-{\alpha}/IFN-{\gamma}$로 자극한 HaCaT 세포에서 iNOS의 단백질 수준을 감소시켰다. 또한 EAA가 IL-4, IL-13, IL-6의 mRNA 발현을 억제하는 것 역시 확인할 수 있었다. 뿐만 아니라 EAA는 $TNF-{\alpha}/IFN-{\gamma}$ 자극에 의해 감소했던 filaggrin을 단백질과 mRNA 수준에서 회복시켰다. 결론 : EAA가 HaCaT 세포에서 Th2 type cytokines, pro-inflammatory cytokine의 억제와 filaggrin 회복을 통해 피부장벽 기능 손상에 대한 억제활성을 갖는 것을 확인하였으며, 이를 통해 EAA가 염증으로 인해 손상된 피부장벽 기능 개선에 효과적일 것으로 사료된다.

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

Ginsenoside Rg1 enhances the healing of injured tendon in achilles tendinitis through the activation of IGF1R signaling mediated by oestrogen receptor

  • Wu, Tianyi;Qi, Wenxiao;Shan, Haojie;Tu, Bin;Jiang, Shilin;Lu, Ye;Wang, Feng
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.526-535
    • /
    • 2022
  • Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

Porcine parvovirus nonstructural protein NS1 activates NF-κB and it involves TLR2 signaling pathway

  • Jin, Xiaohui;Yuan, Yixin;Zhang, Chi;Zhou, Yong;Song, Yue;Wei, Zhanyong;Zhang, Gaiping
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.50.1-50.16
    • /
    • 2020
  • Background: Porcine parvovirus (PPV) is a single-stranded DNA virus that causes porcine reproductive failure. It is of critical importance to study PPV pathogenesis for the prevention and control of the disease. NS1, a PPV non-structural protein, is participated in viral DNA replication, transcriptional regulation, and cytotoxicity. Our previous research showed that PPV can activate nuclear factor kappa B (NF-κB) signaling pathway and then up-regulate the expression of interleukin (IL)-6. Objectives: Herein, the purpose of this study is to determine whether the non-structural protein NS1 of PPV also has the same function. Methods: Real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay, western blot, immunofluorescence assay and small interfering RNA (siRNA) were used. Results: Our findings demonstrated that PPV NS1 protein can up-regulate the expression levels of IL-6 and tumor necrosis factor-alpha in a dose-dependent manner. Moreover, PPV NS1 protein was found to induce the phosphorylation of IκBα, then leading to the phosphorylation and nuclear translocation of NF-κB. In addition, the NS1 protein activated the upstream pathways of NF-κB. Meanwhile, TLR2-siRNA assay showed TLR2 plays an important role in the activation of NF-κB signaling pathway induced by PPV-NS1. Conclusions: These findings indicated that PPV NS1 protein induced the up-regulated of IL-6 expression through activating the TLR2 and NF-κB signaling pathways. In conclusion, these findings provide a new avenue to study the innate immune mechanism of PPV infection.

Inhibitory Effect of Alpiniae officinarum Rhizoma Extract on Degranulation in RBL-2H3 Cells

  • Kim, Eunhee;Ahn, Sejin;Lee, Deug-Chan
    • Korean Journal of Plant Resources
    • /
    • v.28 no.3
    • /
    • pp.321-328
    • /
    • 2015
  • Alpiniae officinarum Rhizoma (the rhizome of Alpinia officinarum Hance, known as lesser galangal), a family of Zingiberaceae, has been used to reduce pain of infection and inflammatory diseases in Asian countries. The present study was focused to evaluate the inhibitory degranulation effect of Alpiniae officinarum Rhizoma extract in RBL-2H3 rat basophilic leukemia cells. Cell viability was measured by MTT assay. RBL-2H3 cells were stimulated by phorbol 12-myristate 13-acetate and calcium ionophore A23187. Mast cell degranulation was analyzed by measuring release of β-hexosaminidase in RBL-2H3 cell. Gene expression was measured by qRT-PCR and signaling molecules were detected by immunoblotting. The Alpiniae officinarum Rhizoma extract suppressed β-hexosaminidase release in dose-dependent manner and inhibited cycloxygenase-2 and tumor necrosis factor-α gene expression. Furthermore, it was found that Alpiniae officinarum Rhizoma extract reduced mitogen-activated protein kinases, especially phosphorylated p38, at 0.75 ㎎/㎖ of Alpiniae officinarum Rhizoma extract concentrations. These data show that Alpiniae officinarum Rhizoma extract has immunosuppressive effect in mast cell induced allergic inflammation.