• Title/Summary/Keyword: RT-qPCR

Search Result 543, Processing Time 0.021 seconds

Gene Expression of Detoxification Enzymes in Tenebrio molitor after Fungicide Captan Exposure (살진균제인 캡탄 처리 후 갈색거저리의 해독효소 유전자 발현)

  • Jang, Ho am;Baek, Hyoung-Seon;Kim, Bo Bae;Kojour, Maryam Ali Mohammadie;Patnaik, Bharat Bhusan;Jo, Yong Hun;Han, Yeon Soo
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.155-163
    • /
    • 2022
  • The application of fungicides is indispensable to global food security, and their use has increased in recent times. Fungicides, directly or indirectly, have impacted insects, leading to genetic and molecular-level changes. Various detoxification mechanisms allow insects to eliminate reactive oxygen species (ROS) toxicity induced by agrochemicals including fungicides. In the present study, we analyzed the mRNA expression levels of detoxifying enzymes in Tenebrio molitor larvae following exposure to non-lethal doses (0.2, 2, and 20 ㎍/µL) of a fungicide captan. Transcripts of peroxidases (POXs), catalases (CATs), superoxide dismutases (SODs), and glutathione-s-transferases (GSTs) were screened from the T. molitor transcriptome database. RT-qPCR analysis showed that TmPOX5 mRNA increased significantly 24 h post-captan exposure. A similar increase was noticed for TmSOD4 mRNA 3 h post-captan exposure. Moreover, the expression of TmCAT2 mRNA increased significantly 24 h post-treatment with 2 ㎍/µL captan. TmGST1 and TmGST3 mRNA expression also increased noticeably after captan exposure. Taken together, these results suggest that TmPOX5 and TmSOD4 mRNA can be used as biomarkers or xenobiotics sensors for captan exposure in T. molitor, while other detoxifying enzymes showed differential expression.

The Study of Attributes of Immune Changes during the Convalescence Temperature Period in Holstein Dairy Cows Exposed to High-Temperature Stress (고온 스트레스 환경에 노출된 홀스타인종 젖소의 회복기 면역 변화 특성 규명)

  • Eun Tae Kim;Sangjin Lee;Ye Eun Kim;Dong-Hyun Lim;Dong Hyeon Kim;Seong Min Park;Jun Sik Eom;Ji Hoo Park;Sang Bum Kim;Sung Sill Lee;Myunghoo Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.4
    • /
    • pp.206-215
    • /
    • 2023
  • This study was performed to investigate immune changes by comparing the proportion and function of immune cells in the blood under high-temperature period and convalescence temperature period in Holstein dairy cows. The experiment was conducted using Holstein dairy cows of five animals per group (60 ± 20 months old, 175 ± 78 non-day) from the National Institute of Animal Science at high-temperature period (THI: 76 ± 1.2) and convalescence temperature period (THI: 66 ± 1.3). Complete blood count results showed no change in the number of immune cells between groups. In the analysis using Flow Cytometry of PBMCs, no significant differences were observed among B cells, Helper T cells, cytotoxic T cells, and γδ T cells between groups. However, there was an increase in Th17 cells producing IL-17a, while Th1 cells decreased during the convalescence temperature period. The results of gene expression analysis using qRT-PCR in PBMCs revealed an increase in IL-10 during the convalescence temperature period, while a decrease in HSP70 and HSP90 was observed. In conclusion, the increased expression of IL-10 and the decrease in HSP expression suggest the possibility of a weak recovery from heat stress. However, the lack of observed changes in B cells, T cells, and other immune cells indicates incomplete recovery from heat stress during the convalescence temperature period.

Fucoidan Reduces Cellular and Mitochondrial Injury and Improves Impaired Osteogenic Activity in MC3T3-E1 Cells Treated with Advanced Glycation End-products (MC3T3-E1 세포에서 최종당산화물에 의한 세포와 미토콘드리아 손상, 조골세포 분화능, 조골 및 파골 활동성 변화에 미치는 후코이단의 효과)

  • Tae Hyun Kim;Jae Suk Woo
    • Journal of Life Science
    • /
    • v.34 no.10
    • /
    • pp.701-712
    • /
    • 2024
  • Fucoidan is a polysaccharide found in brown algae, which is known for its various bioactive effects, including immune enhancement, anti-cancer, and anti-inflammatory properties. In this study, the effects of fucoidan on cellular and mitochondrial damage, as well as changes in osteogenic and osteoclastic activities induced by advanced glycation end-products (AGEs) in MC3T3-E1 osteoblast-like cells, were investigated. Treatment with AGEs resulted in a time- and dose-dependent decrease in MTT reduction capacity, activation of caspases (-3, -8, and -9), and an increase in apoptosis. Pre-treatment with fucoidan significantly alleviated these cellular damage markers caused by AGEs. In addition, fucoidan protected against AGEs-induced mitochondrial dysfunction by significantly mitigating the loss of mitochondrial membrane potential, reduction in intracellular ATP levels, and occurrence of mitochondrial permeability transition in AGEs-treated cells. Fucoidan also markedly suppressed the production of reactive oxygen species and, lipid and protein peroxidation induced by AGEs. In cells exposed to AGEs, gene expression related to osteogenic differentiation and markers of osteogenic activity increased, while markers of osteoclastic activity decreased. Fucoidan significantly moderated these changes. In conclusion, AGEs induce mitochondrial dysfunction and apoptosis in MC3T3-E1 cells, while decreasing osteogenic differentiation and activity, and increasing osteoclastic activity. Fucoidan appears to reduce cellular and mitochondrial damage and improve osteogenic activity impaired by AGEs.