• Title/Summary/Keyword: RSM and CCD

Search Result 111, Processing Time 0.027 seconds

Optimum Rotor Shape Design of Flux Switching Motor using RSM and Performance Improvement by New Type Winding Method (RSM을 이용한 FSM의 로터 형상 설계와 특성 개선을 위한 새로운 권선 기법)

  • Jun, Myung-Jin;Jang, Soon-Myung;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1059-1060
    • /
    • 2011
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

  • PDF

Optimum Design Criteria for Maximum Torque Density & Minimum Torque Ripple of Flux Switching Motor using RSM & FEM (반응표면법과 유한요소법을 이용한 플럭스 스위칭 전동기의 최대토크밀도와 최저토크리플을 위한 최적설계)

  • Kim, Young-Hyun;Lee, Jung-Ho;Kim, Nam-Hoon;Koo, Bon-Sam;Kim, Chan-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.549-554
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of Flux Switching Motor (FSM) using RSM & FEM. The focus of this paper is to find a design solution through the comparison of torque density and torque ripple according to rotor shape variations. And then, a central composite design(CCD) mixed resolution is introduced, and analysis of variance (ANOVA) is conducted to determine the significance of the fitted regression model.

Approximate Multi-Objective Optimization of Robot Casting Considering Deflection and Weight (처짐과 무게를 고려한 주물 프레임의 다중목적 근사최적설계)

  • Choi, Ha-Young;Lee, Jongsoo;Park, Juno
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.954-960
    • /
    • 2012
  • Nowadays, rapidly changing and unstable global economic environments request a lot of roles to engineers. In this situation, product should be designed to make more profit by cost down and to satisfy distinguished performance comparing to other competitive ones. In this research, the optimization design of the industrial robot casting will be done. The weight and deflection have to be reduced as objective functions and stress has to be constrained under some constant value. To reduce time cost, CCD (Central Composite Design) will be used to make experimental design. And RSM (Response Surface Methodology) will be taken to make regression model for objective functions and constraint function. Finally, optimization will be done with Genetic Algorithm. In this problem, the objective functions are multiple, so NSGA-II which is brilliant and efficient for such a problem will be used. For the solution quality check, the diversity between Pareto solutions will be also checked.

Efficient Designs to Develop a Design Space in Quality by Design (설계기반 품질고도화에서 디자인 스페이스 구축을 위한 효율적인 실험계획)

  • Chung, Jong Hee;Kim, Jinyoung;Lim, Yong B.
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.523-535
    • /
    • 2019
  • Purpose: We research on the efficient response surface methodology(RSM) design to develop a design space in Quality by Design(QbD). We propose practical designs for the successful construction of the design space in QbD by allowing different number of replicates at the box points, star points, and the center point in the rotatable central composite design(CCD). Methods: The fraction of design space(FDS) plot is used to compare designs efficiency. The FDS plot shows the fraction of the design space over which the relative standard error of predicted mean response lies below a given value. We search for practical designs whose minimal half-width of the tolerance interval per a standard deviation is less than 4.5 at 0.8 fraction of the design space. Results: The practical designs for the number of factors between two and five are listed. One of the designs in the list could be chosen depending on the experimental budget restriction. Conclusion: The designs with box points replications are more efficient than those with the star points replication. The sequential method to establish a design space is illustrated with the simulated data based on the two examples in RSM.

Microwave Radiation-Assisted Chitin Deacetylation: Optimization by Response Surface Methodology (RSM)

  • Iqmal Tahir;Karna Wijaya;Mudasir;Dita Krismayanti;Aldino Javier Saviola;Roswanira Abdul Wahab;Amalia Kurnia Amin;Wahyu Dita Saputri;Remi Ayu Pratika
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.85-94
    • /
    • 2024
  • The optimization of deacetylation process parameters for producing chitosan from isolated chitin shrimp shell waste was investigated using response surface methodology with central composite design (RSM-CCD). Three independent variables viz, NaOH concentration (X1), radiation power (X2), and reaction time (X3) were examined to determine their respective effects on the degree of deacetylation (DD). The DD of chitosan was also calculated using the baseline approach of the Fourier Transform Infrared (FTIR) spectra of the yields. RSM-CCD analysis showed that the optimal chitosan DD value of 96.45 % was obtained at an optimized condition of 63.41 % (w/v) NaOH concentration, 227.28 W radiation power, and 3.34 min deacetylation reaction. The DD was strongly controlled by NaOH concentration, irradiation power, and reaction duration. The coefficients of correlation were 0.257, 0.680, and 0.390, respectively. Because the procedure used microwave radiation absorption, radiation power had a substantial correlation of 0.600~0.800 compared to the two low variables, which were 0.200~0.400. This independently predicted robust quadratic model interaction has been validated for predicting the DD of chitin.

Quality Characteristics of Rice Cookies Prepared with Stevia rebaudiana Leaf (스테비아(Stevia rebaudiana)잎 첨가 쌀쿠키의 품질 특성)

  • Kim, Dah-Sol;Shin, Jihun;Joo, Nami
    • Journal of the Korean Dietetic Association
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2017
  • The purpose of this study was to determine the optimal recipe of rice cookies with two different amounts of Stevia rebaudiana leaf and grape seed oil, using a central composite design (CCD). In addition, mixing conditions of rice cookies were optimized by sensory evaluation and mechanical and physicochemical analysis using response surface methodology (RSM). RSM was used to obtain 10 experimental points (including two replicates of Stevia rebaudiana leaf and Grape seed oil), and the formulation of Stevia rebaudiana leaf added rice cookies was optimized using rheology. The results of mechanical and physicochemical analysis showed significant values for lightness, redness, yellowness, hardness, spread factor, loss rate, leavening rate, sweetness, moisture, pH, and density (P<0.001), results of the sensory evaluation showed significant values for color, flavor, taste, texture, appearance, and overall quality (P<0.05). As a results, optimal sensory ratio was found to be 1.98 g of Stevia rebaudiana leaf and 37.94 g of Grape seed oil.

Optimization of ultrasound-assisted extraction of glycyrrhizic acid from licorice using response surface methodology

  • Jang, Seol;Lee, A. Yeong;Lee, A. Reum;Choi, Goya;Kim, Ho Kyoung
    • Integrative Medicine Research
    • /
    • v.6 no.4
    • /
    • pp.388-394
    • /
    • 2017
  • Background: The present study optimized ultrasound-assisted extraction conditions to maximize extraction yields of glycyrrhizic acid from licorice. Methods: The optimal extraction temperature ($X_1$), extraction time ($X_2$), and methanol concentration ($X_3$) were identified using response surface methodology (RSM). A central composite design (CCD) was used for experimental design and analysis of the results to obtain the optimal processing parameters. Results: Statistical analyses revealed that three variables and the quadratic of $X_1$, $X_2$, and $X_3$ had significant effects on the yields and were followed by significant interaction effects between the variables of $X_2$ and $X_3$ (p<0.01). A 3D response surface plot and contour plots derived from the mathematical models were applied to determine the optimal conditions. The optimum ultrasound-assisted extraction conditions were as follows: extraction temperature, $69^{\circ}C$; extraction time, 34?min; and methanol concentration, 57%. Under these conditions, the experimental yield of glycyrrhizic acid was 3.414%, which agreed closely with the predicted value (3.406%). Conclusion: The experimental values agreed with those predicted by RSM models, thus indicating the suitability of the model employed and the success of RSM in optimizing the extraction conditions.

Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass (디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

Optimum Design Criteria for Maximum Torque Density and Minimum Torque Ripple of Flux Switching Motor using Response Surface Methodology

  • Lee, Jung-Ho;Lee, Tae-Hoon
    • Journal of Magnetics
    • /
    • v.15 no.2
    • /
    • pp.74-77
    • /
    • 2010
  • This paper deals with optimum design criteria for maximum torque density & minimum torque ripple of a Flux Switching Motor (FSM) using response surface methodology (RSM) & finite element method (FEM). The focus of this paper is to find a design solution through the comparison of torque density and torque ripple which vary with rotor shape. And then, a central composite design (CCD) mixed resolution was introduced and analysis of variance (ANOVA) was conducted to determine the significance of the fitted regression model. The proposed procedure allows one to define the rotor dimensions, starting from an existing motor or a preliminary design.

A Study on Six Sigma Robust Design of Gripper Part for LCD Transfer System (식스 시그마 기반 LCD이송장치의 Gripper부 강건설계에 관한 연구)

  • Chung, W.J.;Jung, D.W.;Kim, S.B.;Yoon, Y.M.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.65-71
    • /
    • 2006
  • This paper presents the robust design of gripper part for a high-speed LCD(Liquid Crystal Display) transfer system. In this paper, the $1^{st}$ DOE(Design of Experiment) is conducted to find out main-effect factors for the design of gripper part. Thirty-six analysis are performed using $ANSYS^{(R)}$ and their results are statistically analyzed using $MINITAB^{(R)}$, which shows that the factors, i.e., First-width, Second-width, Rec-width, and thickness of gripper part, are more important than other factors. The main effect plots shows that the maximum deflection and mass of gripper part are minimized by increasing First-width, Second-width, Rec-width and thickness. The $2^{nd}$ DOE is conducted to obtain RSM(Response Surface Method) equation. The CCD(Central Composite Design) technique with four factors is used. Optimum design is conducted using the RSM equation. Genetic algorithm is used for optimal design. Six sigma robust design is conducted to find out a guideline for control range of design parameter. To obtain six sigma level quality, the standard deviations of design parameters are shown to be controlled within 5% of average design value.