• Title/Summary/Keyword: RSM(Response surface method)

Search Result 453, Processing Time 0.024 seconds

Efficient Optimization of the Suspension Characteristics Using Response Surface Model for Korean High Speed Train (반응표면모델을 이용한 한국형 고속전철 현가장치의 효율적인 최적설계)

  • Park, C.K.;Kim, Y.G.;Bae, D.S.;Park, T.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.461-468
    • /
    • 2002
  • Computer simulation is essential to design the suspension elements of railway vehicle. By computer simulation, engineers can assess the feasibility of the given design factors and change them to get a better design. But if one wishes to perform complex analysis on the simulation, such as railway vehicle dynamic, the computational time can become overwhelming. Therefore, many researchers have used a surrogate model that has a regression model performed on a data sampling of the simulation. In general, metamodels(surrogate model) take the form y($\chi$)=f($\chi$)+$\varepsilon$, where y($\chi$) is the true output, f($\chi$) is the metamodel output, and is the error. In this paper, a second order polynomial equation is used as the RSM(response surface model) for high speed train that have twenty-nine design variables and forty-six responses. After the RSM is constructed, multi-objective optimal solutions are achieved by using a nonlinear programming method called VMM(variable matric method) This paper shows that the RSM is a very efficient model to solve the complex optimization problem.

Simulation based improved seismic fragility analysis of structures

  • Ghosh, Shyamal;Chakraborty, Subrata
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.569-581
    • /
    • 2017
  • The Monte Carlo Simulation (MCS) based seismic fragility analysis (SFA) approach allows defining more realistic relationship between failure probability and seismic intensity. However, the approach requires simulating large number of nonlinear dynamic analyses of structure for reliable estimate of fragility. It makes the approach computationally challenging. The response surface method (RSM) based metamodeling approach which replaces computationally involve complex mechanical model of a structure is found to be a viable alternative in this regard. An adaptive moving least squares method (MLSM) based RSM in the MCS framework is explored in the present study for efficient SFA of existing structures. In doing so, the repetition of seismic intensity for complete generation of fragility curve is avoided by including this as one of the predictors in the response estimate model. The proposed procedure is elucidated by considering a non-linear SDOF system and an existing reinforced concrete frame considered to be located in the Guwahati City of the Northeast region of India. The fragility results are obtained by the usual least squares based and the proposed MLSM based RSM and compared with that of obtained by the direct MCS technique to study the effectiveness of the proposed approach.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Serviceability reliability analysis of cable-stayed bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.609-630
    • /
    • 2005
  • A reliability analysis method is proposed in this paper through a combination of the advantages of the response surface method (RSM), finite element method (FEM), first order reliability method (FORM) and the importance sampling updating method. The accuracy and efficiency of the method is demonstrated through several numerical examples. Then the method is used to estimate the serviceability reliability of cable-stayed bridges. Effects of geometric nonlinearity, randomness in loading, material, and geometry are considered. The example cable-stayed bridge is the Second Nanjing Bridge with a main span length of 628 m built in China. The results show that the cable sag that is part of the geometric nonlinearities of cable-stayed bridges has a major effect on the reliability of cable-stayed bridge. Finally, the most influential random variables on the reliability of cable-stayed bridges are identified by using a sensitivity analysis.

Machining Optimization of Al7075-T0 Turning Process Considering Surface Roughness and Cutting Forces (표면거칠기와 절삭력을 고려한 Al7075-T0 선삭가공 최적화)

  • Jeong, Ji-Hoon;Kim, Jeong-Suk;Kim, Pyeong-Ho;Koo, Joon-Young;Im, Hak-Jin;Lee, Jong-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.842-847
    • /
    • 2012
  • The Response Surface Method(RSM) is used as optimal design technique of experimental conditions. In Al7075-T0 turning operation, the principle cutting force and the Center-line averaged roughness are measured to optimize machining process. In variation of feed, depth of cut and cutting speed, three cutting parameters are evaluated. The optimal cutting conditions of Al7075-T0 turning are suggested by RSM. As a main result, feed is the dominant cutting parameter in this turning process considering surface roughness and cutting force.

Hybrid method for design of IPM type BLDC Motor to reduce cogging torque (IPM type BLDC 전동기의 코깅토크 저감을 위한 Hybrid 최적설계)

  • Hwang, Hyu-Yun;Rhee, Sang-Bong;Kwon, Byung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.74-76
    • /
    • 2007
  • A hybrid optimization method is proposed for cogging torque reducing in BLDC motor. The proposed hybrid optimization method comprises a response surface method (RSM) and a gradient search method (GSM). The RSM is effective and global method in optimization problem but having large approximation error. The GSM is accurate and fast search method for optimal solution but having local behavior. To reduce approximation error and computation time a hybrid method (RSM+GSM) is proposed method. To illustrate the effectiveness of the proposed method, a comparison between conventional RSM and the proposed hybrid method is made. A simulation results verify that the hybrid method can achieve favorable design performance.

  • PDF

The structure Optimization Research of the Automation Welding Equipment of the Large L-type Using the Response Surface Method (반응표면법을 이용한 대형 L-type 자동화용접장치의 구조최적화 연구)

  • Jang, Junho;Jung, Wonjee;Lee, Dongsun;Jung, Jangsik;Jung, Sung Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2013
  • The automation technology for overlay welding is needed due to the occurrence of severe corrosion and abrasion on the surface of internal contact in different shape of fittings. In Korea, different shapes of fittings have been manufactured by using the imported equipment of overlay welding automation at some companies. Thus the research on the development of overlay welding automation system (in short, OWAS) for a large L-type tube is urgently needed. In this paper, the investigation is focused on the optimal design of a supporting base for the (currently developing) OWAS of large L-type tube. Specifically we assume that the base which supports the equipment during the process of overlay welding is loaded as self-weight in the direction of gravity through static analysis especially when it is rotated 180 degree on the OWAS. For optimal design of a supporting base for OWAS of large L-type tube, Solidworks(R) (for 3-dimensional modelling) and ANASYS Workbench(R) (for structural analysis) are incorporated so as to proceed an optimization routines based on Response Surface Method (RSM) and Design of Experiment (DOE). In more specific, DOE finds out major factors (or dimensions) of the supporting base by using MINITAB(R). Then the regression equations between design variables (the major factors of supporting base) and response variables (deformation, stress and safety factor for the supporting base), which will be resulted in by RSM, verify the major factors of DOE. In the next step, Central Composite Design (CCD) plans 20 simulations of ANASYS Workbench(R) and then figures out the optimal values of design variables which will be reflected on the manufacturing of supporting base. Finally welding experiment is conducted to figure out the influence of overlay welding quality in applying the optimized design values of supporting base to the actual OWAS.

Shape Optimization for Interior Permanent Magnet Motor based on Hybrid Algorithm

  • Yim, Woo-Gyong;An, Kwang-Ok;Seo, Jang-Ho;Kim, Min-Jae;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.64-68
    • /
    • 2012
  • In this paper, a design method for minimizing the cogging torque of an Interior Permanent Magnet Motor (IPM) is proposed based on a hybrid algorithm. The suggested optimization algorithm is based on a combination of the Response Surface Method (RSM) and Simplex Method. The results show that the proposed method provides improved characteristics compared to the conventional methods, such as a shorter calculation time and the acquisition of a more correct solution.

Optimization of Flap Shape and Position for Two-dimensional High Lift Device (2차원 고양력장치의 플랩 형상 및 위치 최적화)

  • Park, Youngmin;Kang, Hyoungmin;Chung, Jindeog;Lee, Hae-Chang
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.1-6
    • /
    • 2013
  • Numerical optimization of two dimensional high lift configuration was performed with flow solver and optimization method based on RSM(Response Surface Model). Navier-Stokes solver with Spalart-Allmaras turbulence model was selected for the simulation of highly complex and separated flows on the flap. For the simultaneous optimization of both flap shape and setting (gap/overlap), 10 design variables (eight variables for flap shape variation and two variables for flap setting) were chosen. In order to generate the response surface model, 128 experimental points were selected for 10 design variables. The objective function considering maximum lift coefficient, lift to drag ratio and lift coefficient at specific angle of attack was selected to reduce flow separation on the flap surface. The present method was applied to two dimensional fowler flap in landing configuration. After applying the present method, it was shown that the optimized high lift configuration had less flow separation on the flap surface and lift to drag ratio was suppressed over entire angle of attack range.

A Structural Design Method Using Ensemble Model of RSM and Kriging (반응표면법과 크리깅의 혼합모델을 이용한 구조설계방법)

  • Kim, Nam-Hee;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1630-1638
    • /
    • 2015
  • The finite element analysis has become an essential process to investigate the structural performance in many industry fields. In addition, the computer's performance is improving rapidly, but in large design problems, there is a limit to apply the optimal design techniques. For this, it is general to introduce a metamodel based optimization technique. The method to generate an approximate model can be classified into curve fitting and interpolation, and each representative one is response surface model and kriging interpolation method. This study proposes an ensemble model made of RSM and kriging to solve a structural design problem. The suggested method is applied to the designs of two bar and automobile outer tie rod.