• Title/Summary/Keyword: RS and Turbo Code

Search Result 14, Processing Time 0.02 seconds

A Study on a concatenated RS code and Turbo code for OFDM system over burst noise channel

  • Choi Sang Min;Moon Byung Hyun;Park Jong Soo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.649-652
    • /
    • 2004
  • In this paper, a concatenated RS and Turbo code is proposed for OFDM system over burst error channel. The concatenated code used in this study is a RS(255,2D2) code and a rate 1/2 turbo code. The turbo code uses 2 recursive systematic convolutional (RSC) code as the constituent codes and the parity bit are punctured to get the desired code rate. It is shown by simulation that the conventional OFDM system fails when there exists burst noise. The concatenated RS and turbo code obtains at least 5dB gain over the turbo code at the bit error probability of $10^{-3}$.

  • PDF

The Concatenated Coding Scheme for OFDM system over burst noise channel

  • Byung-Hyun, Moon;Sang-Min, Choi
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.17-22
    • /
    • 2004
  • In this paper, a concatenated RS and Turbo code is proposed for OFDM system over burst error channel. The concatenated code used in this study is a RS(255,202) code and a rate 1/2 turbo code. The turbo code uses 2 recursive systematic convolutional (RSC) code as the constituent codes and the parity bit are punctured to get the desired code rate. It is shown by simulation that the conventional OFDM system fails when there exists burst noise. The concatenated RS and turbo code obtains at least 5dB gain over the turbo code at the bit error probability of 10/sup -3/.

  • PDF

Performance Analysis of RS, Turbo and LDPC Code in the Binary Symmetric Erasure Channel (이진 대칭 소실 채널에서 RS, 터보 및 저밀도 패리티 검사 부호의 성능 분석)

  • Lim, Hyung-Taek;Park, Myung-Jong;Kang, Seog-Geun;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.219-228
    • /
    • 2010
  • In this paper, performance of RS (Reed-Solomon), turbo and LDPC (low density parity check) code in the binary symmetric erasure channel is investigated. When the average erasure length is reduced, the frequency of short erasures is increased. The RS code shows serious performance degradation in such an environment since decoding is carried out symbol-by-symbol. As the erasure length is increased, however, the RS code shows much improved en-or performance. On the other hand, the message and corresponding parity symbols of the turbo code can be erased at the same time for the long erasures. Accordingly, iterative decoding of the turbo code can not improve error performance any more for such a long erasure. The LDPC code shows little difference in error performance with respect to the variation of the average erasure length due to the virtual interleaving effect. As a result, the LDPC code has much better erasure decoding performance than the RS and turbo code.

The Effect of Block Interleaving in an LDPC-Turbo Concatenated Code

  • Lee, Sang-Hoon;Joo, Eon-Kyeong
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.672-675
    • /
    • 2006
  • The effect of block interleaving in a low density parity check (LDPC)-turbo concatenated code is investigated in this letter. Soft decoding can be used in an LDPC code unlike the conventional Reed-Solomon (RS) code. Thus, an LDPC-turbo concatenated code can show better performance than the conventional RS-turbo concatenated code. Furthermore, the performance of an LDPC-turbo code can be improved by using a block interleaver between the LDPC and turbo code. The average number of iterations in LDPC decoding can also be reduced by a block interleaver.

  • PDF

The Study about Channel code to Overcome Multipath of Underwater Channel (수중통신채널에서 다중경로 극복을 위한 오류정정부호에 대한 연구)

  • Kim, Nam-Soo;Kim, Min-Hyuk;Park, Tae-Doo;Kim, Chul-Seung;Jung, Ji-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.738-745
    • /
    • 2009
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes receive signal to make error floor. In this paper, we propose the underwater communication system using various channel coding schemes such as RS coding, convolutional code, turbo code and concatenated code for overcoming the multipath effect in underwater channel. As shown in simulation results, characteristic of multipath error is similar to that of random error. So interleaver has not effect on error correcting. For correcting of error floor by multipath, it is necessary to use strong channel codes like turbo code. Turbo code is one of the iterative codes. And the performance of concatenated codes including RS code has better performance than using singular channel codes.

Performance Analysis of Reed Solomon/Convolutional Concatenated Codes and Turbo code using Semi Random Interleaver over the Radio Communication Channel (무선통신 채널에서 RS/길쌈 연쇄부호와 세미 랜덤 인터리버를 이용한 터보코드의 성능 분석)

  • 홍성원
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.5
    • /
    • pp.861-868
    • /
    • 2001
  • In this paper, the performance of Reed Solomon(RS)/convolution리 concatenated codes and turbo code using semi random interleaver over the radio communication channel was analyzed. In the result, we proved that the performance of decoder was excellent as increase the interleaver size, constraint length, and iteration number. When turbo code using semi random interleaver and Hsiconvolutional concatenated codes was constant constraint length L=5, BER=10-4 , each value of $E_b/N_o$ was 4.5〔dB〕 and 2.95〔dB〕. Therefore, when the constraint length was constant, we proved that the performance of turbo code is superior to RS/Convolutional concatenated codes about 1.55〔dB〕 in the case of BER=10-4.

  • PDF

Propose and Performance Analysis of Turbo Coded New T-DMB System (터보부호화된 새로운 T-DMB 시스템 제안 및 성능 분석)

  • Kim, Hanjong
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.269-275
    • /
    • 2014
  • The DAB system was designed to provide CD quality audio and data services for fixed, portable and mobile applications with the required BER below $10^{-4}$. However for the T-DMB system with the video service of MPEG-4 stream, BER should go down $10^{-8}$ by adding FEC blocks which consist of the Reed-Solomon (RS) encoder/decoder and convolutional interleaver/deinterleaver. In this paper we propose two types of turbo coded T-DMB system without altering the puncturing procedure and puncturing vectors defined in the standard T-DMB system for compatibility. One(Type 1) can replace the existing RS code, convolutional interleaver and RCPC code by a turbo code and the other one (Type 2) can substitute the existing RCPC code by a turbo code. Simulation results show that two new turbo coded systems are able to yield considerable performance gain after just 2 iterations. Type 2 system is better than type 1 but the amount of performance improvement is small.

A Study on the Performance Improvement in T-DMB System

  • Erke, Li;Kim, Hanjong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.766-769
    • /
    • 2009
  • In this paper we propose a new turbo coded T-DMB system that replaces the existing RS code, convolutional interleaver and RCPC code by a turbo code without altering the puncturing procedure and puncturing vectors defined in the standard T-DMB system for compatibility. Simulation results show that the new turbo coded system yields considerable performance gain after just 2 iterations.

  • PDF

Error Control Coding and Space-Time MMSE Multiuser Detection in DS-CDMA Systems

  • Hamouda, Walaa;McLane, Peter J.
    • Journal of Communications and Networks
    • /
    • v.5 no.3
    • /
    • pp.187-196
    • /
    • 2003
  • We consider the use of error control coding in direct sequence-code-division multiple access (OS-COMA) systems that employ multiuser detection (MUO) and space diversity. The relative performance gain between Reed-Solomon (RS) code and convolutional code (CC) is well known in [1] for the single user, additive white Gaussian noise (AWGN) channel. In this case, RS codes outperform CC's at high signal-to-noise ratios. We find that this is not the case for the multiuser interference channel mentioned above. For useful error rates, we find that soft-decision CC's to be uniformly better than RS codes when used with DS-COMA modulation in multiuser space-time channels. In our development, we use the Gaussian approximation on the interference to determine performance error bounds for systems with low number of users. Then, we check their accuracy in error rate estimation via system's simulation. These performance bounds will in turn allow us to consider a large number of users where we can estimate the gain in user-capacity due to channel coding. Lastly, the use of turbo codes is considered where it is shown that they offer a coding gain of 2.5 dB relative to soft-decision CC.

A Turbo-Coded Modulation Scheme for Deep-Space Optical Communications (Deep-Space 광통신을 위한 터보 부호화 변조 기법)

  • Oh, Sang-Mok;Hwang, In-Ho;Lee, Jeong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2C
    • /
    • pp.139-147
    • /
    • 2010
  • A novel turbo coded modulation scheme, called turbo-APPM, for deep space optical communications is constructed. The constructed turbo-APPM is a serial concatenations of turbo codes, an accumulator and a pulse position modulation (PPM), where turbo codes act as an outer code while the accumulator and the PPM act together as an inner code. The generator polynomial and the puncturing rule for generating turbo codes are chosen to show the low bit error rate. At the receiver, the joint decoding is performed by exchanging soft information iteratively between the inner decoder and the outer decoder. In the outer decoder, a local iterative decoding for turbo codes is conducted before transferring soft information to the inner decoder. Poisson distribution is used to model the deep space optical channel. It is shown by simulations that the constructed turbo-APPM provides coding gains over all previously proposed schemes such as LDPC-APPM, RS-PPM and SCPPM.