Recently, spatial information technologies using remotely sensed imagery and functionality of GIS (Geographic Information Systems) have been widely utilized to various types of transportation-related applications. In this study, extraction programs of some practical indices, to be effectively used in transportation reference planning problem, were designed and implemented as prototyped extensions in GIS development environment: traffic flow estimation (TFL/TFB), urban rural index (URI), and accessibility index (AI). In TFL/TFB, user can obtain quantitative results on traffic flow estimation at link/block using high-resolution satellite imagery. Whereas, URI extension provides urban-rural characteristics related to road system, being considered one of important factors in transportation planning. Lastly, AI extension helps to obtain accessibility index between nodes of road segments and surrounding district areas touched or intersected with the road network system, and it also provides useful information for transportation planning problems. This approach is regarded as one of RS-T (Remote Sensing in Transportation), and it is expected to expand as new application of remotely sensed imagery.
This study uses empirical method to estimate absorption coefficient of colored dissolved organic matter $(a_{dom})$ from GOCI satellite data with the relationship between band ratio of remote sensing reflectance $(R_{rs})$ and $a_{dom}$. For development of $a_{dom}$ estimation algorithm, the used data is in-situ data about ocean optical properties in the around seawater area of the Korean Peninsula during 1998 - 2005. The relationship of $R_{rs}$(412)/$R_{rs}$(555), $R_{rs}$(443)/$R_{rs}$(555), $R_{rs}$(490)/$R_{rs}$(555), $R_{rs}$(510)/$R_{rs}$(555) and $a_{dom}$(412) showed $R^2$ values of 0.707, 0.707, 0.597 and 0.552, respectively. The spectrum of $a_{dom}({\lambda})$ is shape of exponential function $a_{dom}({\lambda})$ value decreases with increasing wavelength. For estimation of $a_{dom}$ from satellite data, we developed an algorithm from the relationship of $a_{dom}$(412) and $R_{rs}$(412)/$R_{rs}$(555). This algorithm was employed on SeaWiFS imagery to estimate $R_{rs}$(412) in the South Sea, East Sea, Yellow Sea and northern East China Sea areas. Also, SeaDAS-derived $a_{dg}$(412) from same SeaWiFS imagery, These $a_{dg}$(412) was then compared with in-situ and empirical-algorithm-derived $a_{dom}$(412), but these values were different. We think two points that such different values are caused by discrepancy related to failure of standard atmospheric correction scheme, the other are caused by error related to definition of $a_{dom}$(412) and $a_{dg}$(412).
최근 다양한 센서정보의 민간 활용이 가능해지면서 고해상도 위성영상정보를 현실문제에 적용하려는 수요가 증가하고 있다. 1990년대 말부터 미국 등에서도 위성영상정보를 교통 문제에 실제적으로 적용하고자 하는 연구가 본격적으로 추진되고 있으며, 이러한 연구는 RS-T(remote sensing in transportation)라는 분야로 특성화되는 추세에 있다. 또한 이러한 연구는 이미 산업적 활용단계에 있는 GIS-T(GIS for transportation)와 연계되어 위성영상정보의 활용을 증대시키는데 기여하고 있다. 본 연구에서는 이러한 추세를 반영하여 RS-T를 개관한 뒤, 고해상도 위성영상정보를 이용한 도시교통 환경분석이 가능하도록 교통중력 모델에 기반하여 교통지리학에서 제안되어 온 몇 가지의 정량적 접근성지수 추출 알고리즘을 위성 영상정보를 보조자료로 하여 적용할 수 있도록 ArcView-GIS 환경의 확장 프로그램으로 시험적으로 구현하였으며, 시험 구현 모델 중에서 Ingram 모델과 G&G 모델을 이용하여 접근성지수 추출에 대한 적용하는 사례를 제시하고자 하였다. 적용 결과로서 도출된 정량적 지수정보는 분석 대상지역에 대한 교통접근성의 특성을 파악하는 데 활용이 가능하며, 시계열 위성자료를 적용하는 경우에는 주기적 도시교통 통계정보로 이용되어 광역적 교통계획을 위한 자료로 이용이 될 수 있을 것으로 생각된다.
This paper describes the design of a NUC(Non-uniformity Correction) module in MSC(Multispectral Camera) which will be a payload on KOMPSAT. This module is required inside a system with data compression module like MSC to minimize the loss of imagery due to non-uniform characteristics between CCD pixels when the imagery is received and processed on a ground station. It comprises Hotlink input/output for imagery data, RS-422 interface with main controller in MSC, a number of SRAMS for storing imagery data and parameters, FPGA controllers which control the entire NUC module under the control of main controller, etc. It inputs 8-channel imagery pixel data which consist of 2-channel MS(Multispectral) band and ...
The extraction of earthquake damage from remote sensed imagery requires high spatial resolution and temporal effectiveness of acquisition of imagery. The analog photographs and visual interpretation were taken traditionally. Now it is possible to acquire damage information from many commercial high resolution RS satellites. The key techniques are processing velocity and precision. The authors developed the automatic / semiautomatic image process techniques including feature enhancement, and classification, designed the emergency Earthquake Damage and Losses Evaluate System based on Remote Sensing (RSEDLES). The paper introduced the functions of RSEDLES as well as its application to the earthquakes occurred recently.
Researchers have recently begun using high spatial resolution remote-sensing data, which are automatically captured and georeferenced, to assess damage following natural and man-made disasters, in addition to, or instead of employing the older methods of walking house-to-house for surveys, or photographing individual buildings from an airplane. This research establishes quantitative relationships between the damage states observed at ground-level, and those observed from space using high spatial resolution remote-sensing data, for windstorms, for individual site-built one- or two-family residences (FR12). "Degrees of Damage" (DOD) from the Enhanced Fujita (EF) Scale were determined for ground-based damage states; damage states were also assigned for remote-sensing imagery, using a modified version of Womble's Remote-Sensing (RS) Damage Scale. The preliminary developed model can be used to predict the ground-level damage state using remote-sensing imagery, which could significantly lessen the time and expense required to assess the damage following a windstorm.
Artificial neural networks (ANN) have been successfully used for classifying remotely sensed imagery. However, ANN still is not the preferable choice for classification over the conventional classification methodology such as the maximum likelihood classifier commonly used in the industry production environment. This can be attributed to the ANN characteristic built-in stochastic process that creates difficulties in dealing with unequally represented training classes, and its training performance speed. In this paper we examined some practical aspects of training classes when using a back propagation neural network model for remotely sensed imagery. During the classification process of remotely sensed imagery, representative training patterns for each class are collected by polygons or by using a region-growing methodology over the imagery. The number of collected training patterns for each class may vary from several pixels to thousands. This unequally populated training data may cause the significant problems some neural network empirical models such as back-propagation have experienced. We investigate the effects of training over- or under- represented training patterns in classes and propose the pattern repopulation algorithm, and an adaptive alpha adjustment (AAA) algorithm to handle unequally represented classes. We also show the performance improvement when input patterns are presented in random fashion during the back-propagation training.
Quantification of carbon absorption and understanding the human induced land use changes (LUC) forms one of the major study with respect to global climatic changes. An attempt study has been made to quantify the carbon absorption by LUC through remote sensing technology. The Landsat imagery four time periods was classified with the hybrid classification method in order to quantify carbon absorption by LUC. Thereafter, for estimating the amount of carbon absorption, the stand biomass of forest was estimated with the total weight, which was the sum of individual tree weight. Individual tree volumes could be estimated with the crown width extracted from digital forest cover type map. In particular, the carbon conversion index and the ratio of the $CO_2$ molecular weight to the C atomic weight, reported in the IPCC guideline, was used to convert the stand biomass into the amount of carbon absorption. Total carbon absorption has been modeled by taking areal estimates of LUC of four time periods and carbon factors for land use type and standing biomass. Results of this study, through LUC suggests that over a period of construction, 7.10 % of forest and 9.43 % of barren were converted into urban. In the conversion process, there has been a loss of 6.66 t/ha/y (7.94 %) of carbon absorption from the study area.
이 연구는 지방정부의 홈페이지를 중심으로 지역주민과 관광객에게 제공할 수 있는 다양한 지역정보 콘텐츠를 개발하기 위한 것이다. 특히, 공간정보기술인 GIS(Geographic Information Systems)와 RS(Remote Sensing)기법을 활용하여 지역정보의 콘텐츠를 개발함으로써, 지방정부 홈페이지의 콘텐츠를 다양타함과 동시에 공간정보의 응용분야를 확대하고자 하였다. 이를 위하여 연구대상지역인 전라남도 무안군을 대상으로 인터넷 관련 콘텐츠, 지리정보 관련 콘텐츠 및 인공위성영상 관리프로그램의 3가지 지역정보콘텐츠를 개발하여 제시하였으며, 이를 통하여 지역정보 및 관광정보 둥 공간정보의 현실성과 가독성을 높이는데 기여하였다.
The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat +ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by Ministry of Construction & Transportation based on NGIS (National Geographic Information System) and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The results by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.