• Title/Summary/Keyword: RRMSE

Search Result 46, Processing Time 0.025 seconds

Study of Stochastic Techniques for Runoff Forecasting Accuracy in Gongju basin (추계학적 기법을 통한 공주지점 유출예측 연구)

  • Ahn, Jung Min;Hur, Young Teck;Hwang, Man Ha;Cheon, Geun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.21-27
    • /
    • 2011
  • When execute runoff forecasting, can not remove perfectly uncertainty of forecasting results. But, reduce uncertainty by various techniques analysis. This study applied various forecasting techniques for runoff prediction's accuracy elevation in Gongju basin. statics techniques is ESP, Period Average & Moving average, Exponential Smoothing, Winters, Auto regressive moving average process. Authoritativeness estimation with results of runoff forecasting by each techniques used MAE (Mean Absolute Error), RMSE (Root Mean Squared Error), RRMSE (Relative Root Mean Squared Error), Mean Absolute Percentage Error (MAPE), TIC (Theil Inequality Coefficient). Result that use MAE, RMSE, RRMSE, MAPE, TIC and confirm improvement effect of runoff forecasting, ESP techniques than the others displayed the best result.

Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (Ⅱ) (Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (Ⅱ))

  • Lee , Soon-Hyuk;Ryoo, Kyong-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.15-26
    • /
    • 2004
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. The optimal regionalization of the precipitation data were classified by the above mentioned regionalization for all over the regions except Jeju and Ulleung islands in Korea. Design rainfalls following the consecutive duration were derived by the regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root mean square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared between the regional and at-site frequency analysis. It has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design rainfall. Consequently, optimal design rainfalls following the classified regions and consecutive durations were derived by the regional frequency analysis using Generalized extreme value distribution which was identified to be more optimal one than the other applied distributions. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정)

  • Lee, Soon-Hyuk;Park, Jong-Hwa;Ryoo, Kyong-Sik;Jee, Ho-Keun;Shin, Yong-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.237-240
    • /
    • 2002
  • Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. RRMSE, RBIAS and RR in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. RE for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

  • PDF

Estimation of Design Rainfall by the Regional Frequency Analysis - On the method of L-moments - (지역화빈도분석에 의한 설계강우량 추정 - L-모맨트법을 중심으로 -)

  • Lee, Soon-Hyuk;Park, Jong-Hwa;Ryoo, Kyong-Sik;Jee, Ho-Keun;Jeon, Taek-Ki;Shin, Yong-Hee
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.319-323
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among apt]lied distributions. regional and at-site parameters of the Generalized extreme value distribution were estimated by the method of L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques(l ) - On the method of L-moments- (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정(II) - L-모멘트법을 중심으로 -)

  • 이순혁;박종화;류경식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.70-82
    • /
    • 2001
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. Using the L-moment ratios and Kolmogorov-Smirnov test, the underlying regional probability distribution was identified to be the Generalized extreme value distribution among applied distributions. Regional and at-site parameters of the generalized extreme value distribution were estimated by the linear combination of the probability weighted moments, L-moment. The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE were computed and compared with those resulting from at-site Monte Carlo simulation. All show that the regional analysis procedure can substantially reduce the RRMSE, RBIAS and RR in RRMSE in the prediction of design rainfall. Consequently, optimal design rainfalls following the legions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Estimation of Design Rainfall by the Regional Frequency Analysis using Higher Probability Weighted Moments and GIS Techniques (III) - On the Method of LH-moments and GIS Techniques - (고차확률가중모멘트법에 의한 지역화빈도분석과 GIS기법에 의한 설계강우량 추정 (III) - LH-모멘트법과 GIS 기법을 중심으로 -)

  • 이순혁;박종화;류경식;지호근;신용희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.41-53
    • /
    • 2002
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation suggested by the first report of this project. According to the regions and consecutive durations, optimal design rainfalls were derived by the regional frequency analysis for L-moment in the second report of this project. Using the LH-moment ratios and Kolmogorov-Smirnov test, the optimal regional probability distribution was identified to be the Generalized extreme value (GEV) distribution among applied distributions. regional and at-site parameters of the GEV distribution were estimated by the linear combination of the higher probability weighted moments, LH-moment. Design rainfall using LH-moments following the consecutive duration were derived by the regional and at-site analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared in the regional and at-site frequency analysis. Consequently, it was shown that the regional analysis can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than at-site analysis in the prediction of design rainfall. Relative efficiency (RE) for an optimal order of L-moments was also computed by the methods of L, L1, L2, L3 and L4-moments for GEV distribution. It was found that the method of L-moments is more effective than the others for getting optimal design rainfall according to the regions and consecutive durations in the regional frequency analysis. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

Comparative Analysis of regional and at-site frequency for the design rainfall by Log-Pearson Type III Distribution (Log-Pearson Type III 분포형에 의한 강우의 점빈도 및 지역빈도 비교분석)

  • Ryoo, Kyong-Sik;Lee, Soon-Hyuk;Maeng, Sung-Jin;Song, Ki-Hurn;Kim, Gi-Chang
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.475-478
    • /
    • 2003
  • This study was conducted to compare the design rainfall derived by the at-site and regional frequency analysis based on the regionalization of the precipitation. The regional and at-site design rainfalls were calculated by Log-Pearson type III distribution using Indirect Methods of Moments(WRC). The regional and at-site analysis for the design rainfall were tested by Monte Carlo simulation. Relative root-mean-square error(RRMSE), Relative bias(RBIAS) and Relative reduction(RR) in RRMSE were computed and compared between design rainfalls resulted from observed and simulated data using the regional and at-site analysis. It was shown that the regional analysis procedure can substantially reduce the RRMSE, RBIAS in comparison with those of at-site analysis. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Analysis on Force Tracking Capabilities of Healthy Adults (정상인 힘 추적 능력 분석)

  • Lee, Baekhee;Park, Hyunji;Kim, Sungho;Lee, Byung Wha;Na, Duk L.;You, Heecheon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.2
    • /
    • pp.121-127
    • /
    • 2015
  • A reduction of motor performance due to brain disorders can be screened by evaluating force tracking capabilities (FTCs). Existing studies have examined FTCs mainly using simple sinusoidal waves, of which repeated profiles have a critical limitation due to a learning effect in force tracking. The present study examined the effects of personal factors (age and gender) and sinusoidal wave factors (central force and complexity) on FTCs of healthy adults using composite sinusoidal wave profiles (CSWPs). FTCs were measured using Finger $Touch^{TM}$ for 30 seconds and quantified in terms of time within the target range (TWR, accuracy measure) and relative RMSE (RRMSE, variability measure). A total of 90 healthy adults in 20s to 70s with the equal gender ratio participated in the experiment consisting of combinations of 2 central force levels (6 N and 10 N) and 2 complexity levels (approximate entropy, ApEn = 0.03 and 0.06) of CSWPs. Significantly decreased FTCs (lower TWR and higher RRMSE) were found in aged adults, females, the low central force, and the high complexity. The detailed FTC decrements include a 43% reduced TWR and a 85% increased RRMSE of older adults in 70s as compared to those in 20s, a 17% reduced TWR and a 17% increased RRMSE of female as compared to those of male, a 30% reduced TWR and a 108% increased RRMSE at central force = 6N when compared to those at central force = 10N, and a 19% reduced TWR and a 30% increased RRMSE at ApEn = 0.06 as compared to those at ApEn = 0.03. The characteristics of FTCs for CSWPs can be of use in establishing an assessment protocol of motor performance for screening brain disorders.

Estimation of Drought Rainfall by Regional Frequency Analysis using L and LH-Moments(I) - On the Method of L-Moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정(I) - L-모멘트법을 중심으로 -)

  • 이순혁;윤성수;맹승진;류경식;주호길
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.97-109
    • /
    • 2003
  • This study is mainly conducted to derive the design drought rainfall by the consecutive duration using probability weighted moments with rainfall in the regional drought frequency analysis. It is anticipated to suggest optimal design drought rainfall of hydraulic structures for the water requirement and drought frequency of occurrence for the safety of water utilization through this study. Preferentially, this study was conducted to derive the optimal regionalization of the precipitation data that can be classified by the climatologically and geographically homogeneous regions all over the regions except Cheju and Ulreung islands in Korea. Five homogeneous regions in view of topographical and climatological aspects were accomplished by K-means clustering method. Using the L-moment ratio diagram and Kolmogorov-Smirnov test, generalized extreme value distribution was confirmed as the best fitting one among applied distributions. At-site and regional parameters of the generalized extreme value distribution were estimated by the method of L-moments. Design drought rainfalls using L-moments following the consecutive duration were derived by the at-site and regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root-mean-square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design drought rainfall derived by at-site and regional analysis in the observed an simulated data were computed and compared. In has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE. RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design drought rainfall. Consequently, optimal design drought rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

Estimation of Design Rainfall derived by At-site and Regional Frequency Analysis (지점 및 지역빈도분석에 의한 설계강우량의 추정)

  • Ryoo, Kyong Sik;Lee, Soon Hyuk;Maeng, Sung Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.318-322
    • /
    • 2004
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. For the estimation of the regional design rain(all, classification of the climatologically and geographically homogeneous regions should be preceded preferentially The optimal regionalization of the precipitation data were classified by the above mentioned conditions for all over the regions except Jeju and Ulleung islands in Korea. Relative root mean square error(RRMSE), relative bias(RBIAS) and relative reduction(RR) in RRMSE for the design rainfall were computed and compared between the regional and at-site frequency analysis. Consequently, optimal design rainfalls following the classified regions and consecutive durations were derived by the regional frequency analysis using GEV distribution which was identified to be more optimal one than the other applied distributions.

  • PDF