• Title/Summary/Keyword: ROTATIONAL FRICTION

Search Result 207, Processing Time 0.021 seconds

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

Reliability Analysis of Monopile for a Offshore Wind Turbine Using Response Surface Method (응답면 기법을 이용한 해상풍력용 모노파일의 신뢰성 해석)

  • Yoon, Gil Lim;Kim, Kwang Jin;Kim, Hong Yeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.6
    • /
    • pp.2401-2409
    • /
    • 2013
  • Reliability analysis with response surface method (RSM) was peformed for a offshore wind turbine (OWT) monopile, which is one of mostly used foundations under 25m seawater depth in the world. The behaviors of a real OWT monopile installed into sandy soils subjected to offshore environmental loads such as wind and wave were analysed using reliability design program (HSRBD) developed in KIOST. Sensitivity analysis of design variables for a OWT monopile with 6m diameter showed that the larger in pile diameter the smaller in probability of failure ($P_f$) of a horizontal deflection and a rotational angle at a pile top, but at a greater than 7m of pile diameter, the reduction rate of $P_f$ was almost constant. It is a necessary that appropriate local design criteria should be designated as soon as possible because there were significant differences on horizontal deflections; $P_f$ was 60% at a minimum criteria 15mm deflection, however, 1.5% $P_f$ when 60mm deflection using 1% of pile diameter from local design criterion standard. Finally, friction angle of sand among many design variables was found most influential design factor in OWT monopile design, and a sensitivity analysis is found an important process to understand which design variables can mostly reduce $P_f$ with a optimum design for maintaining OWT stability.

Stability Analysis of Nonhomogeneous Slopes by Log -spiral Failure Surface (이질토층사면의 대수누선파양에 대한 안정해석)

  • Kim, Yeong-Su;Seo, In-Seok;Baek, Yeong-Sik
    • Geotechnical Engineering
    • /
    • v.9 no.2
    • /
    • pp.41-54
    • /
    • 1993
  • This paper presents the two and three -dimensional stability analysis of nonhom- ogeneous, c-o soil slopes. Potential failure surface is assumed as a logspiral curve refracted in boundaries of layers. In 3-D analysis, rotational soil mass is assumed with a cylindroid central part terminated with plane ends. Seismic force is considered by sesmic intensity. The program developed in this study is compared with the program PCSTABLS. The ratio of three-dimensional minimum factor of safety to two-dimensional case is examined and factor of safety changes are showed for the ratio of cylindroid length to slope height and numbers of slice. On such bases the following conclusions may by made : (1) The program developed in this program is less conservative than the program PCSTABLS. (2) The value of F2 of this study shows the larger differences than that of PCSTABLS with increasing friction angle (3) Factors of safety computed for 3-D geometry differ considerablely from ordinary 2-D factors of safety. Since Fb/F2 exceeds unity, three -dimensional effects tend to increase the factor of safety. (4) As the ratio of three - dimensional failure width of slope height, b/H increase, the value of Fb/Ff decreases and approaches 1.0 when bye is 14. (5) In calculating the factor of safety using the developed program the number of slices is suitable with the ranges of 30-40

  • PDF

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill (교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석)

  • Batjargal, Uyanga;Bor, Amgalan;Batchuluun, Ichinkhorloo;Lee, Jehyun;Choi, Heekyu
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

Probabilistic Three-Dimensional Slope Stability Analysis on Logarithmic Spiral Failure (대수누선파양에 대한 확률론적 3차원 사면안정해석)

  • 서인석;김영수
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.121-140
    • /
    • 1994
  • This paper presents the probabilistic model to evaluate the three-dimensional stability of layered deposits and c-0 soil slopes. Rotational slides are assumed with a cylindroid control part terminated with plane ends. And the potential failure surfaces in this study are assumed with the logarithmic spiral curve refracted at boundary of layers. This model takes into consideration the spatial variabilities of soil properties and the uncertainties stemming from insufficient number of samples and the discrepancies between laboratory measured and in -situ values of shear strength parameters. From the probabilistic approxi mate method (FOSM and SOSM method), the mean and variance of safety factor are calculated, respectively. And the programs based on above models is developed and a case study is analysed in detail to study the sensitivity of results to variations in different parameters by using the programs developed in this study. On the basis of thin study the following conclusions could be stated : (1) The sensitivity analysis shown that the probability of failure is more sensitive to the uncertainty of the angle of internal friction than that of the cohesion, (2) The total 3-D proability of failure and the critical width of failure are significantly affected by total width of slope. It is found that the total 3-D probability of failure and the critical width of failure increase with increasing the slope width when seismic forces do not exist and the total 3-D probability of failure increases with increasing the slope width and the critical width of failure decreases when seismic intensity is relatively large, (3) A decrease in the safety factor (due to effect such as a rise in the mean ground water level, lower shear strength parameters, lower values for the correction factors, etc.) would result in reduction in the critical width of failure.

  • PDF

INFLUENCE OF TUNGSTEN CARBIDE/CARBON COATING ON THE PRELOAD OF IMPLANT ABUTMENT SCREWS (임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이 전하중에 미치는 영향에 관한 연구)

  • Choi Jin-Uk;Jeong Chang-Mo;Jeon Young-Chan;Lim Jang-Seop;Jeong Hee-Chan;Eom Tae-Gwan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.229-242
    • /
    • 2006
  • Statement of problem: In order to increase preload with reducing the friction coefficient, abutment screws coated with pure gold and Teflon as dry lubricant coatings have been introduced. But the reported data indicate that if screw repeated tightening and loosening cycle, an efficiency of increasing preload was decreased by screw surface wearing off. Purpose: This study was to evaluate the influence of tungsten carbide/carbon coating, which has superior hardness and frictional wear resistance, on the preload of abutment screws and the stability of coating surface after repeated closures. Material and method: The rotational values of abutment screws and the compressive forces between abutment and fixture were measured in implant systems with three different joint connections, one external butt joint and two internal cones. Moreover the stability and the alteration of coating surface were examined by comparison of the compressive force and the removable torque values during 10 consecutive trials, observation with scanning electron microscope and analyzed the elemental composition with energy dispersive x-ray spectroscopy Results and conclusion: 1. Application of coating resulted in significant increase of compressive force in all implant systems(P<.05). The increasing rate of compressive force by coating in external butt joint was gloater than those in internal cones (P<.05). 2. Coated screw showed the significant additional rotation compared to non-coated screw in all implant systems (P<.05). There were no significant differences in the increasing rate of rotation among implant systems (P>.05). 3. Removable torque values were greater with non-coated screw than that with coated screw (P<.05). 4. Coated screw showed insignificant variations in the compressive forces during 10 consecutive trials(P>.05) 5. After repeated trials, the surface layer of coated screw was maintained relatively well. However surface wearing and irregular titanium fragments were found in non-coated screw.

The Study on Operability Improvement of the start motor for Auxiliary Power Unit of Rotorcraft (회전익 항공기 보조동력장치 시동모터 운용성 개선연구)

  • Lee, Gwang-Eun;Kang, Byoung-Soo;Na, Seong-Hyeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.774-780
    • /
    • 2021
  • The auxiliary power unit (APU) of a rotorcraft starts the engine during operation/flying. The APU is composed of a gas turbine engine type. The starting principle of the component is that the electric start motor generates the power required for starting by rotating the shaft. In this study, quality improvement was performed by applying an over-running clutch (ORC) between the APU and the starter motor to secure the operability of the starter motor of the APU mounted on the rotorcraft. The starter motor has the main role of starting the APU, but during operation, it is rotated without load by the rotational force of the APU gear shaft, resulting in friction at the brush. This phenomenon causes abrasion of the brush of the starter motor. Consequently, when the APU operation time increases, the brush life decreases, and the operability of the APU is affected. In this study, an ORC that separates the interlocking between the start motor brush abrasion and the APU operation time was applied to improve the operability/durability of the APU starter motor. The effect was verified through a test, and the technical feasibility of the design change was analyzed.