• Title/Summary/Keyword: ROS(Robot operating system)

Search Result 62, Processing Time 0.037 seconds

ROS-based Uncertain Environment Map-Builing Test (ROS 기반 불안정한 환경 맵 빌딩 테스트)

  • Park, Tae-Whan;Lee, Kang-Hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.335-338
    • /
    • 2020
  • 주로 맵 빌딩 테스트는 불안정한 환경이 아닌 안정된 환경을 조성한 후에 이루어진다. 본 논문에서는 인위적인 안정된 환경이 아닌 불안정한 환경에서 맵 빌딩을 테스트한다. 맵 빌딩 테스트를 위하여 터틀봇3 버거를 사용한다. 터틀봇3의 라이더 센서를 이용하여 맵 빌딩을 진행한다. 터틀봇3는 라즈베리파이로 제어되며 맵 빌딩과 터틀봇3 제어를 위해서는 ROS를 사용한다. 터틀봇3는 우분투와 ROS가 설치된 컴퓨터와 네트워크 통신을 하며 맵 빌딩을 한다. 불안정한 환경에서 맵빌딩이 동작 및 오동작하는 모습을 확인하였으며, 향후 이를 보완하기 위한 방향을 제시한다.

  • PDF

Educational Indoor Autonomous Mobile Robot System Using a LiDAR and a RGB-D Camera (라이다와 RGB-D 카메라를 이용하는 교육용 실내 자율 주행 로봇 시스템)

  • Lee, Soo-Young;Kim, Jae-Young;Cho, Se-Hyoung;Shin, Chang-yong
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.44-52
    • /
    • 2019
  • We implement an educational indoor autonomous mobile robot system that integrates LiDAR sensing information with RGB-D camera image information and exploits the integrated information. This system uses the existing sensing method employing a LiDAR with a small number of scan channels to acquire LiDAR sensing information. To remedy the weakness of the existing LiDAR sensing method, we propose the 3D structure recognition technique using depth images from a RGB-D camera and the deep learning based object recognition algorithm and apply the proposed technique to the system.

Behavior-based Control Considering the Interaction Between a Human Operator and an Autonomous Surface Vehicle (운용자와 자율 무인선 상호 작용을 고려한 행위 기반의 제어 알고리즘)

  • Cho, Yonghoon;Kim, Jonghwi;Kim, Jinwhan;Jo, Yongjin;Ryu, Jaekwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.620-626
    • /
    • 2019
  • With the development of robot technology, the expectation of autonomous mission operations has increased, and the research on robot control architectures and mission planners has continued. A scalable and robust control architecture is required for unmanned surface vehicles (USVs) to perform a variety of tasks, such as surveillance, reconnaissance, and search and rescue operations, in unstructured and time-varying maritime environments. In this paper, we propose a robot control architecture along with a new utility function that can be extended to various applications for USVs. Also, an additional structure is proposed to reflect the operator's command and improve the performance of the autonomous mission. The proposed architecture was developed using a robot operating system (ROS), and the performance and feasibility of the architecture were verified through simulations.

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

Experimental Performance Validation of an Unmanned Surface Vessel System for Wide-Area Sensing and Monitoring of Hazardous and Noxious Substances (HNS 광역 탐지 및 모니터링을 위한 부유식 무인이동체 시스템의 실험적 성능 검증)

  • Jinwook Park;Jinsik Kim;Jinwhan Kim;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.11-17
    • /
    • 2022
  • In this study, we address the development of a floating platform system based on a unmanned surface vessel for wide-area sensing and monitoring of hazardous and noxious substances (HNSs). For long endurance, a movable floating platform with no mooring lines was used and modified for HNS sensing and monitoring. The floating platform was equipped with various sensors such as optical and thermal imaging cameras, marine radar, and sensors for detecting HNSs in water and air. Additionally, for experiment validation in real outdoor environments, a portable gas-exposure system (PGS) was built and installed on the monitoring system. The software for carrying out the mission was integrated with the Robot Operating System (ROS) framework. The practical feasibility of the developed system was verified through experimental tests conducted in inland water and real-sea environments.

Development of Robot Platform for Autonomous Underwater Intervention (수중 자율작업용 로봇 플랫폼 개발)

  • Yeu, Taekyeong;Choi, Hyun Taek;Lee, Yoongeon;Chae, Junbo;Lee, Yeongjun;Kim, Seong Soon;Park, Sanghyun;Lee, Tae Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.168-177
    • /
    • 2019
  • KRISO (Korea Research Institute of Ship & Ocean Engineering) started a project to develop the core algorithms for autonomous intervention using an underwater robot in 2017. This paper introduces the development of the robot platform for the core algorithms, which is an ROV (Remotely Operated Vehicle) type with one 7-function manipulator. Before the detailed design of the robot platform, the 7E-MINI arm of the ECA Group was selected as the manipulator. It is an electrical type, with a weight of 51 kg in air (30 kg in water) and a full reach of 1.4 m. To design a platform with a small size and light weight to fit in a water tank, the medium-size manipulator was placed on the center of platform, and the structural analysis of the body frame was conducted by ABAQUS. The robot had an IMU (Inertial Measurement Unit), a DVL (Doppler Velocity Log), and a depth sensor for measuring the underwater position and attitude. To control the robot motion, eight thrusters were installed, four for vertical and the rest for horizontal motion. The operation system was composed of an on-board control station and operation S/W. The former included devices such as a 300 VDC power supplier, Fiber-Optic (F/O) to Ethernet communication converter, and main control PC. The latter was developed using an ROS (Robot Operation System) based on Linux. The basic performance of the manufactured robot platform was verified through a water tank test, where the robot was manually operated using a joystick, and the robot motion and attitude variation that resulted from the manipulator movement were closely observed.

Development of Interior Self-driving Service Robot Using Embedded Board Based on Reinforcement Learning (강화학습 기반 임베디드 보드를 활용한 실내자율 주행 서비스 로봇 개발)

  • Oh, Hyeon-Tack;Baek, Ji-Hoon;Lee, Seung-Jin;Kim, Sang-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2018.10a
    • /
    • pp.537-540
    • /
    • 2018
  • 본 논문은 Jetson_TX2(임베디드 보드)의 ROS(Robot Operating System)기반으로 맵 지도를 작성하고, SLAM 및 DQN(Deep Q-Network)을 이용한 목적지까지의 이동명령(목표 선속도, 목표 각속도)을 자이로센서로 측정한 현재 각속도를 이용하여 Cortex-M3의 기반의 MCU(Micro Controllor Unit)에 하달하여 엔코더(encoder) 모터에서 측정한 현재 선속도와 자이로센서에서 측정한 각속도 값을 이용하여 PID제어를 통한 실내 자율주행 서비스 로봇.

A loop closing scheme using UWB based indoor positioning technique (UWB 기반 실내 측위 기술을 활용한 루프 클로징 기법)

  • Hyunwoo You;Jungkyun Lee;Somi Nam;Juyeon Lee;Yoonseo Lee;Minsung Kim;Hong Min
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • UWB is a type of technology used for indoor positioning and is characterized by higher accuracy than RSSI-based schemes. Mobile equipment operating based on ROS can monitor the environment around the equipment using lidar and cameras. When applying the loop closing technique to determine the starting position in this monitoring process, the existing method has a problem of low accuracy because the closing operation occurs only when there are feature points on the image. In this paper, to solve this problem, we designed a system that increases the accuracy of loop closing work by providing location information by mounting a UWB tag on a mobile device. In addition, the accuracy of the UWB-based indoor positioning system was evaluated through experiments, and it was verified that it could be used for loop closing techniques.

Indoor autonomous driving system based on Internet of Things (사물인터넷 기반의 실내 자율주행 시스템)

  • Seong-Hyeon Lee;Ah-Eun Kwak;Seung-Hye Lee;Tae-Kook Kim
    • Journal of Internet of Things and Convergence
    • /
    • v.10 no.2
    • /
    • pp.69-75
    • /
    • 2024
  • This paper proposes an IoT-based indoor autonomous driving system that applies SLAM (Simultaneous Localization And Mapping) and Navigation techniques in a ROS (Robot Operating System) environment based on TurtleBot3. The proposed autonomous driving system can be applied to indoor autonomous wheelchairs and robots. In this study, the operation was verified by applying it to an indoor self-driving wheelchair. The proposed autonomous driving system provides two functions. First, indoor environment information is collected and stored, which allows the wheelchair to recognize obstacles. By performing navigation using the map created through this, the rider can move to the desired location through autonomous driving of the wheelchair. Second, it provides the ability to track and move a specific logo through image recognition using OpenCV. Through this, information services can be received from guides wearing uniforms with the organization's unique logo. The proposed system is expected to provide convenience to passengers by improving mobility, safety, and usability over existing wheelchairs.

AVM Stop-line Detection based Longitudinal Position Correction Algorithm for Automated Driving on Urban Roads (AVM 정지선인지기반 도심환경 종방향 측위보정 알고리즘)

  • Kim, Jongho;Lee, Hyunsung;Yoo, Jinsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.2
    • /
    • pp.33-39
    • /
    • 2020
  • This paper presents an Around View Monitoring (AVM) stop-line detection based longitudinal position correction algorithm for automated driving on urban roads. Poor positioning accuracy of low-cost GPS has many problems for precise path tracking. Therefore, this study aims to improve the longitudinal positioning accuracy of low-cost GPS. The algorithm has three main processes. The first process is a stop-line detection. In this process, the stop-line is detected using Hough Transform from the AVM camera. The second process is a map matching. In the map matching process, to find the corrected vehicle position, the detected line is matched to the stop-line of the HD map using the Iterative Closest Point (ICP) method. Third, longitudinal position of low-cost GPS is updated using a corrected vehicle position with Kalman Filter. The proposed algorithm is implemented in the Robot Operating System (ROS) environment and verified on the actual urban road driving data. Compared to low-cost GPS only, Test results show the longitudinal localization performance was improved.