• Title/Summary/Keyword: ROI Extraction

Search Result 103, Processing Time 0.02 seconds

A Generation of ROI Mask and An Automatic Extraction of ROI Using Edge Distribution of JPEG2000 Image (JPEG2000 이미지의 에지 분포를 이용한 ROI 마스크 생성과 자동 관심영역 추출)

  • Seo, Yeong Geon;Kim, Hee Min;Kim, Sang Bok
    • Journal of Digital Contents Society
    • /
    • v.16 no.4
    • /
    • pp.583-593
    • /
    • 2015
  • Today, caused by the growth of computer and communication technology, multimedia, especially image data are being used in different application divisions. JPEG2000 that is widely used these days provides a Region-of-Interest(ROI) technique. The extraction of ROI has to be rapidly executed and automatically extracted in a huge amount of image because of being seen preferentially to the users. For this purpose, this paper proposes a method about preferential processing and automatic extraction of ROI using the distribution of edge in the code block of JPEG2000. The steps are the extracting edges, automatical extracting of a practical ROI, grouping the ROI using the ROI blocks, generating the mask blocks and then quantization, ROI coding which is the preferential processing, and EBCOT. In this paper, to show usefulness of the method, we experiment its performance using other methods, and executes the quality evaluation with PSNR between the images not coding an ROI and coding it.

Automatic Extraction and Preferred Processing of ROI in JPEG2000 (JPEG2000에서 ROI의 자동 추출과 우선적 처리)

  • Park, Jae-Heung;Seo, Yeong-Geon;Kim, Sang-Bok;Kang, Ki-Jun;Kim, Ho-Yong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.127-136
    • /
    • 2008
  • A digitized image passes by encoding, storing or transmitting to show it to users. In this process, may be users would want to see a specific region of the image. And depending on the system features or in the case that the resolution of the image is large, it will take a huge time that the image show to the users. In this time, it will be resonable that the part users want to see shows earlier and afterward the other parts show. For this, JPEG2000 standards provide ROI. Although ROI extraction that users specify ROI arbitrarily is the best, people not always participate in doing all the images. There needs an automatic ROI extracting and storing in some images. JPEG2000 should extract and send an ROI automatically when the images is encoded without ROI. This study proposes a method that automatically extracts an ROI, makes the ROI masks, transfers the masked image preferentially and the background. And the study compares and experiments the proposed method and the method not having ROI.

  • PDF

ROI Extraction and Enhancement for Finger Vein Recognition (지정맥 인식을 위한 ROI 검출과 정맥 증강처리)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.948-953
    • /
    • 2015
  • Recently, the finger vein recognition based on NIR and CCD sensor camera is investigating the technology to identify a personal using by biometrics. The performance difference of finger vein recognition is generated according to methods that are to separate the vein and background from noises such as finger thickness, ambient light, skin temperature, etc. To improve these problems, in this study, we are proposing the methods for rotation, ROI extraction, and enhancement of vein image captured by NIR LED and CCD camera, and were evaluated performances of these methods. In results of the experiment, the accuracy of the proposed method for image rotation and ROI extraction was 99.8%. And the proposed filter bank method in vein enhancement has shown better performance than retinex algorithm. The proposed method for results of these experimentations will provide better recognition rate when applied to the preprocessing of finger vein recognition.

A High Speed Road Lane Detection based on Optimal Extraction of ROI-LB (관심영역(ROI-LB)의 최적 추출에 의한 차선검출의 고속화)

  • Cheong, Cha-Keon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 2009
  • This paper presents an algorithm, aims at practical applications, for the high speed processing and performance enhancement of lane detection base on vision processing system. As a preprocessing for high speed lane detection, the vanishing line estimation and the optimal extraction of region of interest for lane boundary (ROI-LB) can be processed to reduction of detection region in which high speed processing is enabled. Image feature information is extracted only in the ROI-LB. Road lane is extracted using a non-parametric model fitting and Hough transform within the ROI-LB. With simultaneous processing of noise reduction and edge enhancement using the Laplacian filter, the reliability of feature extraction can be increased for various road lane patterns. Since outliers of edge at each block can be removed with clustering of edge orientation for each block within the ROI-LB, the performance of lane detection can be greatly improved. The various real road experimental results are presented to evaluate the effectiveness of the proposed method.

Virtual core point detection and ROI extraction for finger vein recognition (지정맥 인식을 위한 가상 코어점 검출 및 ROI 추출)

  • Lee, Ju-Won;Lee, Byeong-Ro
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.249-255
    • /
    • 2017
  • The finger vein recognition technology is a method to acquire a finger vein image by illuminating infrared light to the finger and to authenticate a person through processes such as feature extraction and matching. In order to recognize a finger vein, a 2D mask-based two-dimensional convolution method can be used to detect a finger edge but it takes too much computation time when it is applied to a low cost micro-processor or micro-controller. To solve this problem and improve the recognition rate, this study proposed an extraction method for the region of interest based on virtual core points and moving average filtering based on the threshold and absolute value of difference between pixels without using 2D convolution and 2D masks. To evaluate the performance of the proposed method, 600 finger vein images were used to compare the edge extraction speed and accuracy of ROI extraction between the proposed method and existing methods. The comparison result showed that a processing speed of the proposed method was at least twice faster than those of the existing methods and the accuracy of ROI extraction was 6% higher than those of the existing methods. From the results, the proposed method is expected to have high processing speed and high recognition rate when it is applied to inexpensive microprocessors.

ROI Based Object Extraction Using Features of Depth and Color Images (깊이와 칼라 영상의 특징을 사용한 ROI 기반 객체 추출)

  • Ryu, Ga-Ae;Jang, Ho-Wook;Kim, Yoo-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.395-403
    • /
    • 2016
  • Recently, Image processing has been used in many areas. In the image processing techniques that a lot of research is tracking of moving object in real time. There are a number of popular methods for tracking an object such as HOG(Histogram of Oriented Gradients) to track pedestrians, and Codebook to subtract background. However, object extraction has difficulty because that a moving object has dynamic background in the image, and occurs severe lighting changes. In this paper, we propose a method of object extraction using depth image and color image features based on ROI(Region of Interest). First of all, we look for the feature points using the color image after setting the ROI a range to find the location of object in depth image. And we are extracting an object by creating a new contour using the convex hull point of object and the feature points. Finally, we compare the proposed method with the existing methods to find out how accurate extracting the object is.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

Motion-based ROI Extraction with a Standard Angle-of-View from High Resolution Fisheye Image (고해상도 어안렌즈 영상에서 움직임기반의 표준 화각 ROI 검출기법)

  • Ryu, Ar-Chim;Han, Kyu-Phil
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.395-401
    • /
    • 2020
  • In this paper, a motion-based ROI extraction algorithm from a high resolution fisheye image is proposed for multi-view monitoring systems. Lately fisheye cameras are widely used because of the wide angle-of-view and they basically provide a lens correction functionality as well as various viewing modes. However, since the distortion-free angle of conventional algorithms is quite narrow due to the severe distortion ratio, there are lots of unintentional dead areas and they require much computation time in finding undistorted coordinates. Thus, the proposed algorithm adopts an image decimation and a motion detection methods, that can extract the undistorted ROI image with a standard angle-of-view for the fast and intelligent surveillance system. In addition, a mesh-type ROI is presented to reduce the lens correction time, so that this independent ROI scheme can parallelize and maximize the processor's utilization.

The Extraction of ROI(Region Of Interest)s Using Noise Filtering Algorithm Based on Domain Heuristic Knowledge in Breast Ultrasound Image (유방 초음파 영상에서 도메인 경험 지식 기반의 노이즈 필터링 알고리즘을 이용한 ROI(Region Of Interest) 추출)

  • Koo, Lock-Jo;Jung, In-Sung;Choi, Sung-Wook;Park, Hee-Boong;Wang, Gi-Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.74-82
    • /
    • 2008
  • The objective of this paper is to remove noises of image based on the heuristic noises filter and to extract a tumor region by using morphology techniques in breast ultrasound image. Similar objective studies have been conducted based on ultrasound image of high resolution. As a result, efficiency of noise removal is not fine enough for low resolution image. Moreover, when ultrasound image has multiple tumors, the extraction of ROI (Region Of Interest) is not accomplished or processed by a manual selection. In this paper, our method is done 4 kinds of process for noises removal and the extraction of ROI for solving problems of restrictive automated segmentation. First process is that pixel value is acquired as matrix type. Second process is a image preprocessing phase that is aimed to maximize a contrast of image and prevent a leak of personal information. In next process, the heuristic noise filter that is based on opinion of medical specialist is applied to remove noises. The last process is to extract a tumor region by using morphology techniques. As a result, the noise is effectively eliminated in all images and a extraction of tumor regions is possible though one ultrasound image has several tumors.

Image Denoising Methods based on DAECNN for Medication Prescriptions (DAECNN 기반의 병원처방전 이미지잡음제거)

  • Khongorzul, Dashdondov;Lee, Sang-Mu;Kim, Yong-Ki;Kim, Mi-Hye
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.17-26
    • /
    • 2019
  • We aimed to build a patient-based allergy prevention system using the smartphone and focused on the region of interest (ROI) extraction method for Optical Character Recognition (OCR) in the general environment. However, the current ROI extraction method has shown good performance in the experimental environment, but the performance in the real environment was not good due to the noisy background. Therefore, in this paper, we propose the compared methods of reducing noisy background to solve the ROI extraction problem. There five methods used as a SMF, DIN, Denoising Autoencoder(DAE), DAE with Convolution Neural Network(DAECNN) and median filter(MF) with DAECNN (MF+DAECNN). We have shown that our proposed DAECNN and MF+DAECNN methods are 69%, respectively, which is relatively higher than the conventional DAE method 55%. The verification of performance improvement uses MSE, PSNR and SSIM. The system has implemented OpenCV, C++ and Python, including its performance, is tested on real images.