• Title/Summary/Keyword: ROC-curve

Search Result 609, Processing Time 0.028 seconds

Development of Korean Intensive Care Delirium Screening Tool (KICDST) (중환자 섬망 선별도구 개발)

  • Nam, Ae-Ri-Na;Park, Jee-Won
    • Journal of Korean Academy of Nursing
    • /
    • v.46 no.1
    • /
    • pp.149-158
    • /
    • 2016
  • Purpose: This study was done to develop of the Korean intensive care delirium screening tool (KICDST). Methods: The KICDST was developed in 5 steps: Configuration of conceptual frame, development of preliminary tool, pilot study, reliability and validity test, development of final KICDST. Reliability tests were done using degree of agreement between evaluators and internal consistency. For validity tests, CVI (Content Validity Index), ROC (Receiver Operating Characteristics) analysis, known group technique and factor analysis were used. Results: In the reliability test, the degree of agreement between evaluators showed .80~1.00 and the internal consistency was KR-20=.84. The CVI was .83~1.00. In ROC analysis, the AUC (Area Under the ROC Curve) was .98. Assessment score was 4 points. The values for sensitivity, specificity, correct classification rate, positive predictive value, and negative predictive value were found to be 95.0%, 93.7%, 94.4%, 95.0% and 93.7%, respectively. In the known group technique, the average delirium screening tool score of the non-delirium group was $1.25{\pm}0.99$ while that of delirium group was $5.07{\pm}1.89$ (t= - 16.33, p <.001). The factors were classified into 3 factors (cognitive change, symptom fluctuation, psychomotor retardation), which explained 67.4% of total variance. Conclusion: Findings show that the KICDST has high sensitivity and specificity. Therefore, this screening tool is recommended for early identification of delirium in intensive care patients.

Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries (CCD 디지털 방사선사진촬영법의 초기 치아우식증의 진단능 평가에 대한 연구)

  • Lee Wan;Lee Byung-Do
    • Imaging Science in Dentistry
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Purpose : The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. Materials and Methods : 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOV A test. Results: The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p > 0.05). Coclusion : These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  • PDF

Utility of False Profile View for Screening of Ischiofemoral Impingement

  • Kwak, Dae-Kyung;Yang, Ick-Hwan;Kim, Sungjun;Lee, Sang-Chul;Park, Kwan-Kyu;Lee, Woo-Suk
    • Hip & pelvis
    • /
    • v.30 no.4
    • /
    • pp.219-225
    • /
    • 2018
  • Purpose: Ischiofemoral impingement (IFI)-primarily diagnosed by magnetic resonance imaging (MRI)-is an easily overlooked disease due to its low incidence. The purpose of this study was to evaluate the usefulness of false profile view as a screening test for IFI. Materials and Methods: Fifty-eight patients diagnosed with IFI between June 2013 and July 2017 were enrolled in this retrospective study. A control group (n=58) with matching propensity scores (age, gender, and body mass index) were also included. Ischiofemoral space (IFS) was measured as the shortest distance between the lateral cortex of the ischium and the medial cortex of lesser trochanter in weight bearing hip anteroposterior (AP) view and false profile view. MRI was used to measure IFS and quadratus femoris space (QFS). The receiver operating characteristics (ROC), area under the ROC curve (AUC) and cutoff point of the IFS were measured by false profile images, and the correlation between the IFS and QFS was analyzed using the MRI scans. Results: In the false profile view and hip AP view, patients with IFI had significantly decreased IFS (P<0.01). In the false profile view, ROC AUC (0.967) was higher than in the hip AP view (0.841). Cutoff value for differential diagnosis of IFI in the false profile view was 10.3 mm (sensitivity, 88.2%; specificity, 88.4%). IFS correlated with IFS (r=0.744) QFS (0.740) in MRI and IFS (0.621) in hip AP view (P<0.01). Conclusion: IFS on false profile view can be used as a screening tool for potential IFI.

A Comparative Study on the Predictive Validity among Pressure Ulcer Risk Assessment Scales (욕창발생위험사정도구의 타당도 비교)

  • 이영희;정인숙;전성숙
    • Journal of Korean Academy of Nursing
    • /
    • v.33 no.2
    • /
    • pp.162-169
    • /
    • 2003
  • Purpose: This study was to compare the predictive validity of Norton Scale(1962), Cubbin & Jackson Scale(1991), and Song & Choi Scale(1991). Method: Data were collected three times per week from 48~72hours after admission based on the four pressure sore risk assessment scales and a skin assessment tool for pressure sore on 112 intensive care unit(ICU) patients in a educational hospital Ulsan during Dec, 11, 2000 to Feb, 10, 2001. Four indices of validity and area under the curve(AUC) of receiver operating characteristic(ROC) were calculated. Result: Based on the cut off point presented by the developer, sensitivity, specificity, positive predictive value, negative predictive value were as follows : Norton Scale : 97%, 18%, 35%, 93% respectively; Cubbin & Jackson Scale : 89%, 61%, 51%, 92%, respectively; and Song & Choi Scale : 100%, 18%, 36%, 100% respectively. Area under the curves(AUC) of receiver operating characteristic(ROC) were Norton Scale .737, Cubbin & Jackson Scale .826, Song & Choi Scale .683. Conclusion: The Cubbin & Jackson Scale was found to be the most valid pressure sore risk assessment tool. Further studies on patients with chronic conditions may be helpful to validate this finding.

Comparative Study of Contrast-Enhanced Ultrasound Qualitative and Quantitative Analysis for Identifying Benign and Malignant Breast Tumor Lumps

  • Liu, Jian;Gao, Yun-Hua;Li, Ding-Dong;Gao, Yan-Chun;Hou, Ling-Mi;Xie, Ting
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8149-8153
    • /
    • 2014
  • Background: To compare the value of contrast-enhanced ultrasound (CEUS) qualitative and quantitative analysis in the identification of breast tumor lumps. Materials and Methods: Qualitative and quantitative indicators of CEUS for 73 cases of breast tumor lumps were retrospectively analyzed by univariate and multivariate approaches. Logistic regression was applied and ROC curves were drawn for evaluation and comparison. Results: The CEUS qualitative indicator-generated regression equation contained three indicators, namely enhanced homogeneity, diameter line expansion and peak intensity grading, which demonstrated prediction accuracy for benign and malignant breast tumor lumps of 91.8%; the quantitative indicator-generated regression equation only contained one indicator, namely the relative peak intensity, and its prediction accuracy was 61.5%. The corresponding areas under the ROC curve for qualitative and quantitative analyses were 91.3% and 75.7%, respectively, which exhibited a statistically significant difference by the Z test (P<0.05). Conclusions: The ability of CEUS qualitative analysis to identify breast tumor lumps is better than with quantitative analysis.

Scoring System for Factors Affecting Aggravation of Lumbar Disc Herniation

  • Lee, Sung Wook;Kim, Sang Yoon;Lee, Jee Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Purpose: To investigate the various imaging factors associated with aggravation of lumbar disc herniation (LDH) and develop a scoring system for prediction of LDH aggravation. Materials and Methods: From 2015 to 2017, we retrospectively reviewed the magnetic resonance imaging (MRI) findings of 60 patients (30 patients with aggravated LDH and 30 patients without any altered LDH). Imaging factors for MRI evaluation included the level of LDH, disc degeneration, back muscle atrophy, facet joint degeneration, ligamentum flavum thickness and interspinous ligament degeneration. Flexion-extension difference was measured with simple radiography. The scoring system was analyzed using receiver operating characteristic (ROC) analysis. Results: The aggravated group manifested a higher grade of disc degeneration, back muscle atrophy and facet degeneration than the control group. The ligamentum flavum thickness in the aggravated group was thicker than in the group with unaltered LDH. The summation score was defined as the sum of the grade of disc degeneration, back muscle atrophy and facet joint degeneration. The area under the ROC curve showing the threshold value of the summation score for prediction of aggravation of LDH was 0.832 and the threshold value corresponded to 6.5. Conclusion: Disc degeneration, facet degeneration, back muscle atrophy and ligamentum flavum thickness are important factors in predicting aggravation of LDH and may facilitate the determination of treatment strategy in patients with LDH. The summation score is available as supplemental data.

Motion-Based Background Subtraction without Geometric Computation in Dynamic Scenes

  • Kawamoto, Kazuhiko;Imiya, Atsushi;Hirota, Kaoru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.559-562
    • /
    • 2003
  • A motion-based background subtraction method without geometric computation is proposed, allowing that the camera is moving parallel to the ground plane with uniform velocity. The proposed method subtracts the background region from a given image by evaluating the difference between calculated and model Hows. This approach is insensitive to small errors of calculated optical flows. Furthermore, in order to tackle the significant errors, a strategy for incorporating a set of optical flows calculated over different frame intervals is presented. An experiment with two real image sequences, in which a static box or a moving toy car appears, to evaluate the performance in terms of accuracy under varying thresholds using a receiver operating characteristic (ROC) curve. The ROC curves show, in the best case, the figure-ground segmentation is done at 17.8 % in false positive fraction (FPF) and 71.3% in true positive fraction (TPF) for the static-object scene and also at 14.8% in FPF and 72.4% In TPF for the moving-object scene, regardless if the calculated optical flows contain significant errors of calculation.

  • PDF

Diagnostic performance of dental students in identifying mandibular condyle fractures by panoramic radiography and the usefulness of reference images

  • Cho, Bong-Hae
    • Imaging Science in Dentistry
    • /
    • v.41 no.2
    • /
    • pp.53-57
    • /
    • 2011
  • Purpose : The purpose of this study was to evaluate the diagnostic performance of dental students in detection of mandibular condyle fractures and the effectiveness of reference panoramic images. Materials and Methods : Forty-six undergraduates evaluated 25 panoramic radiographs for condylar fractures and the data were analyzed through receiver operating characteristic (ROC) analysis. After a month, they were divided into two homogeneous groups based on the first results and re-evaluated the images with (group A) or without (group B) reference images. Eight reference images included indications showing either typical condylar fractures or anatomic structures which could be confused with fractures. Paired t-test was used for statistical analysis of the difference between the first and the second evaluations for each group, and student�fs t-test was used between the two groups in the second evaluation. The intra- and inter-observer agreements were evaluated with Kappa statistics. Results : Intra- and inter-observer agreements were substantial (k=0.66) and moderate (k=0.53), respectively. The area under the ROC curve (Az) in the first evaluation was 0.802. In the second evaluation, it was increased to 0.823 for group A and 0.814 for group B. The difference between the first and second evaluations for group A was statistically significant (p<0.05), however there was no statistically significant difference between the two groups in the second evaluation. Conclusion : Providing reference images to less experienced clinicians would be a good way to improve the diagnostic ability in detecting condylar fracture.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • v.6 no.3
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

In vivo Evaluation of Flow Estimation Methods for 3D Color Doppler Imaging

  • Yoo, Yang-Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2010
  • In 3D ultrasound color Doppler imaging (CDI), 8-16 pulse transmissions (ensembles) per each scanline are used for effective clutter rejection and flow estimation, but it yields a low volume acquisition rate. In this paper, we have evaluated three flow estimation methods: autoregression (AR), eigendecomposition (ED), and autocorrelation combined with adaptive clutter rejection (AC-ACR) for a small ensemble size (E=4). The performance of AR, ED and AC-ACR methods was compared using 2D and 3D in vivo data acquired under different clutter conditions (common carotid artery, kidney and liver). To evaluate the effectiveness of three methods, receiver operating characteristic (ROC) curves were generated. For 2D kidney in vivo data, the AC-ACR method outperforms the AR and ED methods in terms of the area under the ROC curve (AUC) (0.852 vs. 0.793 and 0.813, respectively). Similarly, the AC-ACR method shows higher AUC values for 2D liver in vivo data compared to the AR and ED methods (0.855 vs. 0.807 and 0.823, respectively). For the common carotid artery data, the AR provides higher AUC values, but it suffers from biased estimates. For 3D in vivo data acquired from a kidney transplant patient, the AC-ACR with E=4 provides an AUC value of 0.799. These in vivo experiment results indicate that the AC-ACR method can provide more robust flow estimates compared to the AR and ED methods with a small ensemble size.