• Title/Summary/Keyword: ROC-curve

Search Result 609, Processing Time 0.029 seconds

Using SEER Data to Quantify Effects of Low Income Neighborhoods on Cause Specific Survival of Skin Melanoma

  • Cheung, Min Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3219-3221
    • /
    • 2013
  • Background: This study used receiver operating characteristic (ROC) curves to screen Surveillance, Epidemiology and End Results (SEER) skin melanoma data to identify and quantify the effects of socioeconomic factors on cause specific survival. Methods: 'SEER cause-specific death classification' used as the outcome variable. The area under the ROC curve was to select best pretreatment predictors for further multivariate analysis with socioeconomic factors. Race and other socioeconomic factors including rural-urban residence, county level % college graduate and county level family income were used as predictors. Univariate and multivariate analyses were performed to identify and quantify the independent socioeconomic predictors. Results: This study included 49,999 parients. The mean follow up time (SD) was 59.4 (17.1) months. SEER staging (ROC area of 0.08) was the most predictive foctor. Race, lower county family income, rural residence, and lower county education attainment were significant univariates, but rural residence was not significant under multivariate analysis. Living in poor neighborhoods was associated with a 2-4% disadvantage in actuarial cause specific survival. Conclusions: Racial and socioeconomic factors have a significant impact on the survival of melanoma patients. This generates the hypothesis that ensuring access to cancer care may eliminate these outcome disparities.

Application of Quality Statistical Techniques Based on the Review and the Interpretation of Medical Decision Metrics (의학적 의사결정 지표의 고찰 및 해석에 기초한 품질통계기법의 적용)

  • Choi, Sungwoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.243-253
    • /
    • 2013
  • This research paper introduces the application and implementation of medical decision metrics that classifies medical decision-making into four different metrics using statistical diagnostic tools, such as confusion matrix, normal distribution, Bayesian prediction and Receiver Operating Curve(ROC). In this study, the metrics are developed based on cross-section study, cohort study and case-control study done by systematic literature review and reformulated the structure of type I error, type II error, confidence level and power of detection. The study proposed implementation strategies for 10 quality improvement activities via 14 medical decision metrics which consider specificity and sensitivity in terms of ${\alpha}$ and ${\beta}$. Examples of ROC implication are depicted in this paper with a useful guidelines to implement a continuous quality improvement, not only in a variable acceptance sampling in Quality Control(QC) but also in a supplier grading score chart in Supplier Chain Management(SCM) quality. This research paper is the first to apply and implement medical decision-making tools as quality improvement activities. These proposed models will help quality practitioners to enhance the process and product quality level.

Improving the Accuracy of Early Diagnosis of Thyroid Nodule Type Based on the SCAD Method

  • Shahraki, Hadi Raeisi;Pourahmad, Saeedeh;Paydar, Shahram;Azad, Mohsen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1861-1864
    • /
    • 2016
  • Although early diagnosis of thyroid nodule type is very important, the diagnostic accuracy of standard tests is a challenging issue. We here aimed to find an optimal combination of factors to improve diagnostic accuracy for distinguishing malignant from benign thyroid nodules before surgery. In a prospective study from 2008 to 2012, 345 patients referred for thyroidectomy were enrolled. The sample size was split into a training set and testing set as a ratio of 7:3. The former was used for estimation and variable selection and obtaining a linear combination of factors. We utilized smoothly clipped absolute deviation (SCAD) logistic regression to achieve the sparse optimal combination of factors. To evaluate the performance of the estimated model in the testing set, a receiver operating characteristic (ROC) curve was utilized. The mean age of the examined patients (66 male and 279 female) was $40.9{\pm}13.4years$ (range 15- 90 years). Some 54.8% of the patients (24.3% male and 75.7% female) had benign and 45.2% (14% male and 86% female) malignant thyroid nodules. In addition to maximum diameters of nodules and lobes, their volumes were considered as related factors for malignancy prediction (a total of 16 factors). However, the SCAD method estimated the coefficients of 8 factors to be zero and eliminated them from the model. Hence a sparse model which combined the effects of 8 factors to distinguish malignant from benign thyroid nodules was generated. An optimal cut off point of the ROC curve for our estimated model was obtained (p=0.44) and the area under the curve (AUC) was equal to 77% (95% CI: 68%-85%). Sensitivity, specificity, positive predictive value and negative predictive values for this model were 70%, 72%, 71% and 76%, respectively. An increase of 10 percent and a greater accuracy rate in early diagnosis of thyroid nodule type by statistical methods (SCAD and ANN methods) compared with the results of FNA testing revealed that the statistical modeling methods are helpful in disease diagnosis. In addition, the factor ranking offered by these methods is valuable in the clinical context.

Seasonal Effects Removal of Unsupervised Change Detection based Multitemporal Imagery (다시기 원격탐사자료 기반 무감독 변화탐지의 계절적 영향 제거)

  • Park, Hong Lyun;Choi, Jae Wan;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • Recently, various satellite sensors have been developed and it is becoming more convenient to acquire multitemporal satellite images. Therefore, various researches are being actively carried out in the field of utilizing change detection techniques such as disaster and land monitoring using multitemporal satellite images. In particular, researches related to the development of unsupervised change detection techniques capable of extracting rapidly change regions have been conducted. However, there is a disadvantage that false detection occurs due to a spectral difference such as a seasonal change. In order to overcome the disadvantages, this study aimed to reduce the false alarm detection due to seasonal effects using the direction vector generated by applying the $S^2CVA$ (Sequential Spectral Change Vector Analysis) technique, which is one of the unsupervised change detection methods. $S^2CVA$ technique was applied to RapidEye images of the same and different seasons. We analyzed whether the change direction vector of $S^2CVA$ can remove false positives due to seasonal effects. For the quantitative evaluation, the ROC (Receiver Operating Characteristic) curve and the AUC (Area Under Curve) value were calculated for the change detection results and it was confirmed that the change detection performance was improved compared with the change detection method using only the change magnitude vector.

African American Race and Low Income Neighborhoods Decrease Cause Specific Survival of Endometrial Cancer: A SEER Analysis

  • Cheung, Min Rex
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2567-2570
    • /
    • 2013
  • Background: This study analyzed Surveillance, Epidemiology and End Results (SEER) data to assess if socio-economic factors (SEFs) impact on endometrial cancer survival. Materials and Methods: Endometrial cancer patients treated from 2004-2007 were included in this study. SEER cause specific survival (CSS) data were used as end points. The areas under the receiver operating characteristic (ROC) curve were computed for predictors. Time to event data were analyzed with Kaplan-Meier method. Univariate and multivariate analyses were used to identify independent risk factors. Results: This study included 64,710 patients. The mean follow up time (S.D.) was 28.2 (20.8) months. SEER staging (ROC area of 0.81) was the best pretreatment predictor of CSS. Histology, grade, race/ethnicity and county level family income were also significant pretreatment predictors. African American race and low income neighborhoods decreased the CSS by 20% and 3% respectively at 5 years. Conclusions: This study has found significant endometrial survival disparities due to SEFs. Future studies should focus on eliminating socio-economic barriers to good outcomes.

Estimating Discriminatory Power with Non-normality and a Small Number of Defaults

  • Hong, C.S.;Kim, H.J.;Lee, J.L.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.803-811
    • /
    • 2012
  • For credit evaluation models, we extend the study of discriminatory power based on AUC obtained from a ROC curve when the number of defaults is small and distribution functions of the defaults and non-defaults are normal distributions. Since distribution functions do not satisfy normality in real world, the distribution functions of the defaults and non-defaults are assumed as normal mixture distributions based on results that the normal mixture could be better fitted than other distribution estimation methods for non-normal data. By using several AUC statistics, the discriminatory power under such a circumstance is explored and compared with those of normal distributions.

Neuropsychology of Attention (주의력의 신경심리학)

  • Kim, Chang-Yoon;Kim, Seong-Yoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.26-31
    • /
    • 1999
  • "Attention" is not defined sufficiently. This term incorporates several dimensions or complex information processes such as alertness, spatial distribution, focused attention, sustained attention, divided attention and supervisory attentional control. In practice, however, various aspects of attention cannot be assessed separately with a single test. Moreover, a particular test is never assessing attention only, because the several intervening variables may influence the attentional component. Therefore, one can only assess a certain aspect of human behavior with special interest for its attentional component. This paper attempted to clarify various concepts of attention, reviewed signal detection theories with receiver operating characteristic(ROC) curves, and listed practical methods for assessment of attention.

  • PDF

Algorithm Improvement Through AI-Based Casting Process Parameter Optimization (AI 기반의 주조 공정 파라미터 최적화를 통한 알고리즘 개선)

  • Hyun Sim;Seo-Young Choi;Hyun-Wook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.3
    • /
    • pp.441-448
    • /
    • 2023
  • The quality of the casting process generates the largest source of defects in the manufacturing process, so its management is a key factor in productivity and quality evaluation. Based on the results of factor analysis, correlation analysis, and regression analysis with process data, this study aims to optimize the machine learning model to reduce the defect rate and verify the data suitability for smart factories.

Validity and Reliability of the Korean Version of the Pain Assessment Checklist for Seniors with Limited Ability to Communicate (치매노인의 통증사정을 위한 한국어판 PACSLAC의 신뢰도, 타당도 및 유용성 평가)

  • Kim, Eun-Kyung;Kim, Se Young;Eom, Mi Ran;Kim, Hyun Sook;Lee, Eunpyo
    • Journal of Korean Academy of Nursing
    • /
    • v.44 no.4
    • /
    • pp.398-406
    • /
    • 2014
  • Purpose: This study was done to develop and test the validity and reliability of the Korean version of the Pain Assessment Checklist for Seniors with Limited Ability to Communicate (PACSLAC-K) in assessing pain of elders with dementia living in long-term care facilities. Methods: The PACSLAC-K was developed through forward-backward translation techniques. Survey data were collected from 307 elders with dementia living in 5 long-term care facilities in Korea. Data were analyzed using descriptive statistics, Pearson correlation, Spearman's rho, paired t-test, ROC (receiver operation characteristic) curve with the SPSS/WIN (20.0) program. Results: The PACSLAC-K showed high internal consistency (.90), interrater reliability (.86), intrarater reliability (.93), and high concurrent validity (.74) in paired t-test with PAINAD. Discriminant validity also showed a significant difference compared with no pain. The PACSLAC-K showed a sensitivity of .93, specificity of .88, and Area Under the Curve of .95 in the ROC curve. Conclusion: The findings of this study demonstrate that PACSLAC-K is useful in assessing pain for elders with dementia living in long-term care facilities.

A Logistic Model Including Risk Factors for Lymph Node Metastasis Can Improve the Accuracy of Magnetic Resonance Imaging Diagnosis of Rectal Cancer

  • Ogawa, Shimpei;Itabashi, Michio;Hirosawa, Tomoichiro;Hashimoto, Takuzo;Bamba, Yoshiko;Kameoka, Shingo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.707-712
    • /
    • 2015
  • Background: To evaluate use of magnetic resonance imaging (MRI) and a logistic model including risk factors for lymph node metastasis for improved diagnosis. Materials and Methods: The subjects were 176 patients with rectal cancer who underwent preoperative MRI. The longest lymph node diameter was measured and a cut-off value for positive lymph node metastasis was established based on a receiver operating characteristic (ROC) curve. A logistic model was constructed based on MRI findings and risk factors for lymph node metastasis extracted from logistic-regression analysis. The diagnostic capabilities of MRI alone and those of the logistic model were compared using the area under the curve (AUC) of the ROC curve. Results: The cut-off value was a diameter of 5.47 mm. Diagnosis using MRI had an accuracy of 65.9%, sensitivity 73.5%, specificity 61.3%, positive predictive value (PPV) 62.9%, and negative predictive value (NPV) 72.2% [AUC: 0.6739 (95%CI: 0.6016-0.7388)]. Age (<59) (p=0.0163), pT (T3+T4) (p=0.0001), and BMI (<23.5) (p=0.0003) were extracted as independent risk factors for lymph node metastasis. Diagnosis using MRI with the logistic model had an accuracy of 75.0%, sensitivity 72.3%, specificity 77.4%, PPV 74.1%, and NPV 75.8% [AUC: 0.7853 (95%CI: 0.7098-0.8454)], showing a significantly improved diagnostic capacity using the logistic model (p=0.0002). Conclusions: A logistic model including risk factors for lymph node metastasis can improve the accuracy of MRI diagnosis of rectal cancer.