In Korea, more than half of work-related fatalities have occurred on construction sites. To reduce such occupational accidents, safety inspection by government agencies is essential in construction sites that present a high risk of serious accidents. To address this issue, this study developed risk prediction models of serious accidents in construction sites using five machine learning methods: support vector machine, random forest, XGBoost, LightGBM, and AutoML. To this end, 15 proactive information (e.g., number of stories and period of construction) that are usually available prior to construction were considered and two over-sampling techniques (SMOTE and ADASYN) were used to address the problem of class-imbalanced data. The results showed that all machine learning methods achieved 0.876~0.941 in the F1-score with the adoption of over-sampling techniques. LightGBM with ADASYN yielded the best prediction performance in both the F1-score (0.941) and the area under the ROC curve (0.941). The prediction models revealed four major features: number of stories, period of construction, excavation depth, and height. The prediction models developed in this study can be useful both for government agencies in prioritizing construction sites for safety inspection and for construction companies in establishing pre-construction preventive measures.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
v.2
no.1
/
pp.1-14
/
2021
The study has been carried out with an objective to prepare Siberian roe deer habitat potential maps in South Korea based on three geographic information system-based models including frequency ratio (FR) as a bivariate statistical approach as well as convolutional neural network (CNN) and long short-term memory (LSTM) as machine learning algorithms. According to field observations, 741 locations were reported as roe deer's habitat preferences. The dataset were divided with a proportion of 70:30 for constructing models and validation purposes. Through FR model, a total of 10 influential factors were opted for the modelling process, namely altitude, valley depth, slope height, topographic position index (TPI), topographic wetness index (TWI), normalized difference water index, drainage density, road density, radar intensity, and morphological feature. The results of variable importance analysis determined that TPI, TWI, altitude and valley depth have higher impact on predicting. Furthermore, the area under the receiver operating characteristic (ROC) curve was applied to assess the prediction accuracies of three models. The results showed that all the models almost have similar performances, but LSTM model had relatively higher prediction ability in comparison to FR and CNN models with the accuracy of 76% and 73% during the training and validation process. The obtained map of LSTM model was categorized into five classes of potentiality including very low, low, moderate, high and very high with proportions of 19.70%, 19.81%, 19.31%, 19.86%, and 21.31%, respectively. The resultant potential maps may be valuable to monitor and preserve the Siberian roe deer habitats.
Purpose: This study evaluated the influence of a metal artifact reduction (MAR) tool in a cone-beam computed tomography (CBCT) device on the diagnosis of vertical root fractures (VRFs) in teeth with different root filling materials. Materials and Methods: Forty-five extracted human premolars were classified into three subgroups; 1) no filling; 2) gutta-percha; and 3) metallic post. CBCT images were acquired using an Orthopantomograph 300 unit with and without a MAR tool. Subsequently, the same teeth were fractured, and new CBCT scans were obtained with and without MAR. Two oral radiologists evaluated the images regarding the presence or absence of VRF. Receiver operating characteristic (ROC) curves and diagnostic tests were performed. Results: The overall area under the curve values were 0.695 for CBCT with MAR and 0.789 for CBCT without MAR. The MAR tool negatively influenced the overall diagnosis of VRFs in all tested subgroups, with lower accuracy (0.45-0.72), sensitivity (0.6-0.67), and specificity (0.23-0.8) than were found for the images without MAR. In the latter group, the accuracy, sensitivity, and specificity values were 0.68-0.77, 0.67-083, and 0.53-087, respectively. However, no significant difference was found between images with and without MAR for the no filling and gutta-percha subgroups (P>0.05). In the metallic post subgroup, CBCT showed a significant difference according to MAR use (P<0.05). Conclusion: The OP 300 MAR tool negatively influenced the detection of VRFs in teeth with no root canal filling, gutta-percha, or metallic posts. Teeth with metallic posts suffered the most from the negative impact of MAR.
Kim, Hyun Cheol;Yim, Dong-Gyun;Kim, Ji Won;Lee, Dongheon;Jo, Cheorun
Food Science of Animal Resources
/
v.41
no.2
/
pp.312-323
/
2021
The purpose of this study was to use 1H nuclear magnetic resonance (1H NMR) to quantify taste-active and bioactive compounds in chicken breasts and thighs from Korean native chicken (KNC) [newly developed KNCs (KNC-A, -C, and -D) and commercial KNC-H] and white-semi broiler (WSB) used in Samgye. Further, each breed was differentiated using multivariate analyses, including a machine learning algorithm designed to use metabolic information from each type of chicken obtained using 1H-13C heteronuclear single quantum coherence (2D NMR). Breast meat from KNC-D chickens were superior to those of conventional KNC-H and WSB chickens in terms of both taste-active and bioactive compounds. In the multivariate analysis, meat portions (breast and thigh) and chicken breeds (KNCs and WSB) could be clearly distinguished based on the outcomes of the principal component analysis and partial least square-discriminant analysis (R2=0.945; Q2=0.901). Based on this, we determined the receiver operating characteristic (ROC) curve for each of these components. AUC analysis identified 10 features which could be consistently applied to distinguish between all KNCs and WSB chickens in both breast (0.988) and thigh (1.000) meat without error. Here, both 1H NMR and 2D NMR could successfully quantify various target metabolites which could be used to distinguish between different chicken breeds based on their metabolic profile.
In this article, we proposed to predict natural gas (NG) leakage levels through feature selection based on a factor analysis (FA) of the integrating the Korean Meteorological Agency data and natural gas leakage data for considering complex factors. The paper has been divided into three modules. First, we filled missing data based on the linear interpolation method on the integrated data set, and selected essential features using FA with OrdinalEncoder (OE)-based normalization. The dataset is labeled by K-means clustering. The final module uses four algorithms, K-nearest neighbors (KNN), decision tree (DT), random forest (RF), Naive Bayes (NB), to predict gas leakage levels. The proposed method is evaluated by the accuracy, area under the ROC curve (AUC), and mean standard error (MSE). The test results indicate that the OrdinalEncoder-Factor analysis (OE-F)-based classification method has improved successfully. Moreover, OE-F-based KNN (OE-F-KNN) showed the best performance by giving 95.20% accuracy, an AUC of 96.13%, and an MSE of 0.031.
Jun Young, Park;Young Jae, Kim;Jisup, Kim;Kwang Gi, Kim
Journal of Biomedical Engineering Research
/
v.44
no.1
/
pp.25-32
/
2023
Recognizing the size and location of prostate cancer is critical for prostate cancer diagnosis, treatment, and predicting prognosis. This paper proposes a model to classify the tumor region and normal tissue with cross-sectional visual images of prostatectomy tissue. We used specimen images of 44 prostate cancer patients who received prostatectomy at Gachon University Gil Hospital. A total of 289 prostate slice images consist of 200 slices including tumor region and 89 slices not including tumor region. Images were divided based on the presence or absence of tumor, and a total of 93 features from each slice image were extracted using Radiomics: 18 first order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM. We compared feature selection techniques such as LASSO, ANOVA, SFS, Ridge and RF, LR, SVM classifiers for the model's high performances. We evaluated the model's performance with AUC of the ROC curve. The results showed that the combination of feature selection techniques LASSO, Ridge, and classifier RF could be best with an AUC of 0.99±0.005.
Lim, Sukjoon;Kim, Nam Hyeok;Kwak, Hyo Sung;Hwang, Seung Bae;Chung, Gyung Ho
Investigative Magnetic Resonance Imaging
/
v.25
no.4
/
pp.323-331
/
2021
Purpose: To investigate the diagnostic criteria of T1-weighted imaging (T1W) and time-of-flight (TOF) imaging for detecting intraplaque hemorrhage (IPH) of a vertebrobasilar artery (VBA) compared with simultaneous non-contrast angiography and intraplaque hemorrhage (SNAP) imaging. Materials and Methods: Eighty-seven patients with VBA atherosclerosis who underwent high resolution MR imaging for evaluation of VBA plaque were reviewed. The presence and location of VBA plaque and IPH on SNAP were determined. The signal intensity (SI) of the VBA plaque on T1W and TOF imaging was manually measured and the SI ratio against adjacent muscles was calculated. The receiver-operating characteristic (ROC) curve was used to compare the diagnostic accuracy for detecting VBA IPH. Results: Of 87 patients, 67 had IPH and 20 had no IPH on SNAP. The SI ratio between VBA IPH and temporalis muscle on T1W was significantly higher than that in the no-IPH group (235.9 ± 16.8 vs. 120.0 ± 5.1, P < 0.001). The SI ratio between IPH and temporalis muscle on TOF was also significantly higher than that in the no-IPH group (236.8 ± 13.3 vs. 112.8 ± 7.4, P < 0.001). Diagnostic efficacies of SI ratios on TOF and TIW were excellent (AUC: 0.976 on TOF and 0.964 on T1W; cutoff value: 136.7% for TOF imaging and 135.1% for T1W imaging). Conclusion: Compared with SNAP, cutoff levels of the SI ratio between VBA plaque and temporalis muscle on T1W and TOF imaging for detecting IPH were approximately 1.35 times.
Soyon An;Gunha Hwang;Seul Ah Noh;Young-Min Yoon;Hee Chun Lee;Tae Sung Hwang
Journal of Veterinary Clinics
/
v.40
no.1
/
pp.31-37
/
2023
Vertebral left atrial size (VLAS) is an important indicator to predict myxomatous mitral valve degeneration (MMVD) in dogs. When the caudal margin of cardiac silhouette and the dorsal margin of caudal vena cava (CdVC) could not be seen exactly, another way to evaluate VLAS is needed. The objective of this study was to assess whether a new modified VLAS (m-VLAS) could be used as an indicator to predict MMVD in 57 small breed dogs with MMVD. The m-VLAS was also used to classify American College of Veterinary Internal Medicine staging groups and left heart enlargement confirmed with echocardiograph (EchoLHE) groups. The m-VLAS was measured as the distance from the ventral aspect of the carina to the dorsal aspect of the intersection of the cardiac silhouette and the farthest LA caudal margin, not the CdVC, followed by drawing the same line beginning at the cranial edge of T4. Based on VLAS values and m-VLAS values measured for dogs with MMVD, correlations between these values and left heart enlargement groups were then evaluated. There were significant differences in both the VLAS and the m-VLAS between EchoLHE groups. The AUC of the ROC curve of the m-VLAS to detect EchoLHE was higher than that of the VLAS. The optimal cutoff value for the m-VLAS was >2.7, which had a higher specificity (86.84%) than the VLAS specificity (71.05%). This study reveals that a new m-VLAS is a more specific indicator than the VLAS for predicting left side heart enlargement in small breed dogs. Therefore, the m-VLAS can be used as a clinically useful radiographic measurement alternative to or better than the VLAS.
Purpose : This study aims to establish an optimal cut-off score on the Braden scale for the assessment of pressure injury to detect pressure injury risks among inpatients in a South Korean tertiary hospital. Methods : This retrospective study used electronic medical records, from January to December 2022. A total of 654 patients were included in the study. Of these, 218 inpatients with pressure injuries and 436 without pressure injuries were classified and analyzed using 1:2 Propensity Score Matching (PSM), and the generalized estimating equation was performed using SPSS Version 26 and the R Machlt package program. Results : The cut-off value on the Braden scale for distinguishing pressure injury was 17 points, and the AUC (area under the ROC curve) was 0.531 (0.484-0.579). The sensitivity was 56.6% (45.5-67.7%) and the specificity was 69.7% (66.0-73.4%). With 17 points, the Braden scale cut-off distinguished those who had pressure injuries from those who did not at the time of admission (p < .03). In the pressure injury group, the Braden score on the day of the pressure injury was 14, with significant results in all subcategories except the moisture category. Conclusion : Our findings revealed that a cut-off value of 17 was optimal for predicting the risk of pressure injuries among tertiary hospital inpatients. Future studies should evaluate the optimal cut-off values in different clinical environments. Additionally, it is necessary to conduct multicenter large sample studies to verify the effectiveness of a 17 value in PI risk assessments.
We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.