Background: Gastric cancer (GC) is the second cause of cancer related death in the world. It may develop by progression from its precancerous condition, called gastric atrophy (GA) due to gastritis. The aim of this study was to evaluate the accuracy of serum levels of pepsinogens (Pg) and gastrin-17 (G17) as non-invasive methods to discriminate GA or GC (GA/GC) patients. Materials and Methods: Subjects referred to gastrointestinal clinics of Golestan province of Iran during 2010 and 2011 were invited to participate. Serum levels of PgI, PgII and G17 were measured using a GastroPanel kit. Based on the pathological examination of endoscopic biopsy samples, subjects were classified into four groups: normal, non-atrophic gastritis, GA, and GC. Receiver operating curve (ROC) analysis was used to determine cut-off values. Indices of validity were calculated for serum markers. Results: Study groups were normal individuals (n=74), non-atrophic gastritis (n=90), GA (n=31) and GC patients (n=30). The best cut-off points for PgI, PgI/II ratio, G17 and HP were $80{\mu}g/L$, 10, 6 pmol/L, and 20 EIU, respectively. PgI could differentiate GA/GC with high accuracy (AUC=0.83; 95%CI: 0.76-0.89). The accuracy of a combination of PgI and PgI/II ratio for detecting GA/GC was also relatively high (AUC=0.78; 95%CI: 0.70-0.86). Conclusions: Our findings suggested PgI alone as well as a combination of PgI and PgI/II ratio are valid markers to differentiate GA/GC. Therefore, Pgs may be considered in conducting GC screening programs in high-risk areas.
Background: Relatively little is known with certainty about the status and role of p53 or MDM2 in predicting prognosis and survival of renal cell carcinoma. The present study aimed to determine the value of P53 and MDM2 over-expression, alone and simultaneously, to predict five-year survival of patients with kidney cancer in Iran. Materials and Methods: Patients with kidney cancer referred to Hasheminejad Kidney Center between 2007 and 2009, underwent radical nephrectomy and had pathology reports of clear cell, papillary or chromophobe renal cell carcinoma were included in our cohort study. Other histological types of renal cell carcinoma were not included. The patients with missed, incomplete or poor quality paraffin blocks were also excluded. Overall ninety one patients met the inclusion and exclusion criteria. To assess the histopathological features of the tumor, immunohistochemical (IHC) staining of formalin fixed, paraffin-embedded tumor samples were performed. The five-year survival was determined by the patients' medical files and telephone following-up. Results: In total, 1.1% of all samples were revealed to be positive for P53. Also, 20.8% of all samples were revealed to be positive for MDM2.The patients were all followed for 5 years. In this regard, 5-year mortality was 30.5% and thus 5-year survival was 85.3%. According to the Cox proportional hazard analysis, positive P53 marker was only predictor for patients' 5-year survival that the presence of positive p53 increased the risk for long-term mortality up to 2.8 times (HR=2.798, 95%CI: 1.176-6.660, P=0.020). However, the presence of MDM2 could not predict long-term mortality. In this regard, analysis by the ROC curve showed a limited role for predicting long-term survival by confirming P53 positivity (AUC=0.610, 95%CI: 0.471-.750, P=0.106). The best cutoff point for P53 to predict mortality was 0.5 yielding a low sensitivity (32.0%) but a high specificity (97.9%). In similar analysis, measurement of MDM2 positivity could not predict mortality (AUC=0.449, 95%CI: 0.316-.583, P=0.455). Conclusions: The simultaneous presence of both P53 and MDM2 markers in our population is a rare phenomenon and the presence of these markers may not predict long-term survival in patients who undergoing radical nephrectomy.
Background: The statistical methods to analyze and predict the related dangerous factors of deep fungal infection in lung cancer patients were several, such as logic regression analysis, meta-analysis, multivariate Cox proportional hazards model analysis, retrospective analysis, and so on, but the results are inconsistent. Materials and Methods: A total of 696 patients with lung cancer were enrolled. The factors were compared employing Student's t-test or the Mann-Whitney test or the Chi-square test and variables that were significantly related to the presence of deep fungal infection selected as candidates for input into the final artificial neural network analysis (ANN) model. The receiver operating characteristic (ROC) and area under curve (AUC) were used to evaluate the performance of the artificial neural network (ANN) model and logistic regression (LR) model. Results: The prevalence of deep fungal infection from lung cancer in this entire study population was 32.04%(223/696), deep fungal infections occur in sputum specimens 44.05%(200/454). The ratio of candida albicans was 86.99% (194/223) in the total fungi. It was demonstrated that older (${\geq}65$ years), use of antibiotics, low serum albumin concentrations (${\leq}37.18g/L$), radiotherapy, surgery, low hemoglobin hyperlipidemia (${\leq}93.67g/L$), long time of hospitalization (${\geq}14$days) were apt to deep fungal infection and the ANN model consisted of the seven factors. The AUC of ANN model($0.829{\pm}0.019$)was higher than that of LR model ($0.756{\pm}0.021$). Conclusions: The artificial neural network model with variables consisting of age, use of antibiotics, serum albumin concentrations, received radiotherapy, received surgery, hemoglobin, time of hospitalization should be useful for predicting the deep fungal infection in lung cancer.
Species distribution modeling is one of the most effective habitat analysis methods for wildlife conservation. This study was for evaluating the suitability of species distribution to distance between forest patches in Seoul city using tits. We analyzed the distribution of the four species of tits: varied tit (Parus varius), marsh tit (P. palustris), great tit (P. major) and coal tit (P. ater), using the landscape indexes and connectivity indexes, and compared the resulting suitability indexes from 100m to 1,000m. As factors affecting to the distribution of tits, we calculated landscape indices by separating them into intra-patch indices (i.e. logged patch area (PA), area-weighted mean patch shape index (PSI), tree rate (TR)) and inter-patch indices (i.e. patch degree (PD), patch betweenness (PB), difference probability of connectivity (DPC)), to analyze the internal properties of the patches and their connectivity by tits occurrence data using logistic regression modeling. The models were evaluated by AICc (Akaike Information Criteria with a correction for finite sample sizes) and AUC (Area Under Curve of ROC). The results of AICc and AUC showed DPC, PA, PSI, and TR were important factors of the habitat models for great tit and marsh tit at the level of distance 500~800m. In contrast, habitat models for coal tit and varied tit, which are known as forest interior species, reflected PA, PSI, and TR as intra-patch indices rather than connectivity. These mean that coal tit and varied tit are more likely to find a large circular forest patch than a small and long-shaped forest patch, which are higher rate of forest. Therefore, different strategies are required in order to enhance the habitats of the forest birds, tits, in a region that has fragmented forest patches such as Seoul city. It is important to manage forest interior areas for coal tit and varied tit, which are known as forest interior species and to manage not only forest interior areas but also connectivity of the forest patches in the threshold distance for great tit and marsh tit as adapted species to the urban ecosystem for sustainable ecosystem management.
Background: The success rate of intubation under direct laryngoscopy is greatly influenced by laryngoscopic grade using the Cormack-Lehane classification. However, it is not known whether grade under direct laryngoscopy can also affects the success rate of nasotracheal intubation using a fiberoptic bronchoscpe, so this study investigated the same. In addition, we investigated other factors that influence the success rate of fiberoptic nasotracheal intubation (FNI). Methods: FNI was performed by 18 anesthesiology residents under general anesthesia in patients over 15 years of age who underwent elective oral and maxillofacial operations. In all patients, the Mallampati grade was measured. Laryngeal view grade under direct laryngoscopy, and the degree of secretion and bleeding in the oral cavity was measured and divided into 3 grades. The time required for successful FNI was measured. If the intubation time was > 5 minutes, it was evaluated as a failure and the airway was managed by another method. The failure rate was evaluated using appropriate statistical method. Receiver operating characteristic (ROC) curves and area under the curve (AUC) were also measured. Results: A total of 650 patients were included in the study, and the failure rate of FNI was 4.5%. The patient's sex, age, height, weight, Mallampati, and laryngoscopic view grade did not affect the success rate of FNI (P > 0.05). BMI, the number of FNI performed by residents (P = 0.03), secretion (P < 0.001), and bleeding (P < 0.001) grades influenced the success rate. The AUCs of bleeding and secretion were 0.864 and 0.798, respectively, but the AUC of BMI, the number of FNI performed by residents, Mallampati, and laryngoscopic view grade were 0.527, 0.616, 0.614, and 0.544, respectively. Conclusion: Unlike in intubation under direct laryngoscopy, in the case of FNI, oral secretion and nasal bleeding had a significant effect on FNI difficulty than Mallampati grade or Laryngeal view grade.
This paper discusses a methodology where an integrated modelling framework is used to quantify the risk derived from anthropic activities on habitats and species. To achieve this purpose, a tool comprising the Delft3D and HABITAT model, was applied in the Yeongsan river. Delft3D effectively simulated the operational condition and flow of weirs in river. In accuracy evaluation of the Delft3D-FLOW, the Bias, Pbias, Mean Absolute Error (MAE), Nash-Sutcliffe Efficiency (NSE), and Index of Agreement (IOA) were used, and the result was evaluated as grade above 'Satisfactory'. The HABITAT calculated Habitat Suitability Value (HSV) for the following eight species: mammal, fish, aquatic plant, and benthic macroinvertebrate. An Area was defined as a suitable habitat if the HSV was larger than 0.5. HABITAT was judged accurately by measuring the Correct Classification rate (CCR) and the area under the ROC curve (AUC). For benthic macroinvertebrate, the CCR and AUC were 77% and 0.834, respectively, at thresholds of 0.017 and 4 inds/m2 for HSV and individuals per unit area. This meant that the HABITAT model accurately predicted the appearance of the benthic macroinvertebrates by approximately 77% and that the probability of false alarms was also very low. As a result of evaluating the suitability of habitats, in the Yeongsan river, if the annual "lowest level" (Seungchon weir: 2.5 EL.m/ Juksan weir: -1.35 EL.m) was maintained, the average habitat improvement effect of 6.5%P compared to the 'reference' scenario was predicted. Consequently, it was demonstrated that the integrated modelling framework for habitat suitability assessment is able to support the remedy aquatic ecological management.
Park, Jiyeon;Cho, Hyung Rae;Kang, Keum Nae;Choi, Kun Woong;Choi, Young Soon;Jeong, Hye-Won;Yi, Jungmin;Kim, Young Uk
The Korean Journal of Pain
/
v.34
no.2
/
pp.229-233
/
2021
Background: Iliotibial band friction syndrome (ITBFS) is a common disorder of the lateral knee. Previous research has reported that the iliotibial band (ITB) thickness (ITBT) is correlated with ITBFS, and ITBT has been considered to be a key morphologic parameter of ITBFS. However, the thickness is different from inflammatory hypertrophy. Thus, we made the ITB cross-sectional area (ITBCSA) a new morphological parameter to assess ITBFS. Methods: Forty-three patients with ITBFS group and from 43 normal group who underwent T1W magnetic resonance imaging were enrolled. The ITBCSA was measured as the cross-sectional area of the ITB that was most hypertrophied in the magnetic resonance axial images. The ITBT was measured as the thickest site of ITB. Results: The mean ITBCSA was 25.24 ± 6.59 ㎟ in the normal group and 38.75 ± 9.11 ㎟ in the ITBFS group. The mean ITBT was 1.94 ± 0.41 mm in the normal group and 2.62 ± 0.46 mm in the ITBFS group. Patients in ITBFS group had significantly higher ITBCSA (P < 0.001) and ITBT (P < 0.001) than the normal group. A receiver operator characteristic curve analysis demonstrated that the best cut-off value of the ITBT was 2.29 mm, with 76.7% sensitivity, 79.1% specificity, and area under the curve (AUC) 0.88. The optimal cut-off score of the ITBCSA was 30.66 ㎟, with 79.1% sensitivity, 79.1% specificity, and AUC 0.87. Conclusions: ITBCSA is a new and sensitive morphological parameter for diagnosing ITBFS, and may even be more accurate than ITBT.
Karaman, M. Muge;Zhou, Christopher Y.;Zhang, Jiaxuan;Zhong, Zheng;Wang, Kezhou;Zhu, Wenzhen
Investigative Magnetic Resonance Imaging
/
v.26
no.2
/
pp.104-116
/
2022
The purpose of this study is to systematically determine an optimal percentile cut-off in histogram analysis for calculating the mean parameters obtained from a non-Gaussian continuous-time random-walk (CTRW) diffusion model for differentiating individual glioma grades. This retrospective study included 90 patients with histopathologically proven gliomas (42 grade II, 19 grade III, and 29 grade IV). We performed diffusion-weighted imaging using 17 b-values (0-4000 s/mm2) at 3T, and analyzed the images with the CTRW model to produce an anomalous diffusion coefficient (Dm) along with temporal (𝛼) and spatial (𝛽) diffusion heterogeneity parameters. Given the tumor ROIs, we created a histogram of each parameter; computed the P-values (using a Student's t-test) for the statistical differences in the mean Dm, 𝛼, or 𝛽 for differentiating grade II vs. grade III gliomas and grade III vs. grade IV gliomas at different percentiles (1% to 100%); and selected the highest percentile with P < 0.05 as the optimal percentile. We used the mean parameter values calculated from the optimal percentile cut-offs to do a receiver operating characteristic (ROC) analysis based on individual parameters or their combinations. We compared the results with those obtained by averaging data over the entire region of interest (i.e., 100th percentile). We found the optimal percentiles for Dm, 𝛼, and 𝛽 to be 68%, 75%, and 100% for differentiating grade II vs. III and 58%, 19%, and 100% for differentiating grade III vs. IV gliomas, respectively. The optimal percentile cut-offs outperformed the entire-ROI-based analysis in sensitivity (0.761 vs. 0.690), specificity (0.578 vs. 0.526), accuracy (0.704 vs. 0.639), and AUC (0.671 vs. 0.599) for grade II vs. III differentiations and in sensitivity (0.789 vs. 0.578) and AUC (0.637 vs. 0.620) for grade III vs. IV differentiations, respectively. Percentile-based histogram analysis, coupled with the multi-parametric approach enabled by the CTRW diffusion model using high b-values, can improve glioma grading.
Lee, Won Young;Sung, Hyo Hyun;Ahn, Sejin;Park, Seon Ki
Journal of The Geomorphological Association of Korea
/
v.27
no.1
/
pp.61-89
/
2020
The objective of this study is to characterize landslide susceptibility depending on various geo-environmental variables as well as to compare the Frequency Ratio (FR) and Evidential Belief Function (EBF) methods for landslide susceptibility analysis of rainfall-induced landslides. In 2013, a total of 259 landslides occurred in Chuncheon, Gangwon Province, South Korea, due to heavy rainfall events with a total cumulative rainfall of 296~721mm in 106~231 hours duration. Landslides data were mapped with better accuracy using the geographic information system (ArcGIS 10.6 version) based on the historic landslide records in Chuncheon from the National Disaster Management System (NDMS), the 2013 landslide investigation report, orthographic images, and aerial photographs. Then the landslides were randomly split into a testing dataset (70%; 181 landslides) and validation dataset (30%; 78 landslides). First, geo-environmental variables were analyzed by using FR and EBF functions for the full data. The most significant factors related to landslides were altitude (100~200m), slope (15~25°), concave plan curvature, high SPI, young timber age, loose timber density, small timber diameter, artificial forests, coniferous forests, soil depth (50~100cm), very well-drained area, sandy loam soil and so on. Second, the landslide susceptibility index was calculated by using selected geo-environmental variables. The model fit and prediction performance were evaluated using the Receiver Operating Characteristic (ROC) curve and the Area Under Curve (AUC) methods. The AUC values of both model fit and prediction performance were 80.5% and 76.3% for FR and 76.6% and 74.9% for EBF respectively. However, the landslide susceptibility index, with classes of 'very high' and 'high', was detected by 73.1% of landslides in the EBF model rather than the FR model (66.7%). Therefore, the EBF can be a promising method for spatial prediction of landslide occurrence, while the FR is still a powerful method for the landslide susceptibility mapping.
The increase in the dropout rate of college students nationwide has a serious negative impact on universities and society as well as individual students. In order to proactive identify students at risk of dropout, this study built a decision tree, random forest, logistic regression, and deep learning-based dropout prediction model using academic data that can be easily obtained from each university's academic management system. Their performances were subsequently analyzed and compared. The analysis revealed that while the logistic regression-based prediction model exhibited the highest recall rate, its f-1 value and ROC-AUC (Receiver Operating Characteristic - Area Under the Curve) value were comparatively lower. On the other hand, the random forest-based prediction model demonstrated superior performance across all other metrics except recall value. In addition, in order to assess model performance over distinct prediction periods, we divided these periods into short-term (within one semester), medium-term (within two semesters), and long-term (within three semesters). The results underscored that the long-term prediction yielded the highest predictive efficacy. Through this study, each university is expected to be able to identify students who are expected to be dropped out early, reduce the dropout rate through intensive management, and further contribute to the stabilization of university finances.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.