Objectives : To evaluate the diagnostic value of quantitative ultrasound (QUS) in the prediction of osteoporosis as defined by dual energy x-ray absorptiometry (DEXA) in postmenopausal women. Methods : Questionnaires and height and weight measurements were used in the investigation of 176 postmenopausal women. QUS measurements were taken on the right calcaneus while bone mineral density (BMD) measurements of the lumbar spine and femoral neck were made with DEXA. The areas under the curves (AUC) of the speed of sound (SOS) for osteoporosis in the lumbar spine and femoral neck were obtained through receiver operating characteristic (ROC) analysis and evaluated. A comparison was made, for osteoporosis in the lumbar spine and femoral neck, between the AUCs of the logistic model with clinical risk factors and SOS. Results : Pearson's correlation coefficients of SOS and lumbar spine BMD, and of SOS and femoral neck BMD were 0.26 and 0.37. The AUC for the logistic model in its discrimination for lumbar spine osteoporosis was 0.764, and for SOS 0.605. The AUCs for the logistic model in its discrimination for femoral neck osteoporosis and for SOS were 0.890 and 0.892, respectively. Conclusions : These results suggest that the diagnostic value of QUS as a screening tool for osteoporosis is moderate for the femoral neck, but merely low for the lumbar spine and that the predictability provided by SOS is no better than that by the sole use of clinical risk factors in postmenopausal women.
Park, Seon Uk;Koo, Kyung Ah;Seo, Changwan;Kong, Woo-Seok
Journal of Climate Change Research
/
v.7
no.3
/
pp.325-334
/
2016
We projected the distribution of Hedera rhombea, an evergreen broad-leaved climbing plant, under current climate conditions and predicted its future distributions under global warming. Inaddition, weexplained model uncertainty by employing 9 single Species Distribution model (SDM)s to model the distribution of Hedera rhombea. 9 single SDMs were constructed with 736 presence/absence data and 3 temperature and 3 precipitation data. Uncertainty of each SDM was assessed with TSS (Ture Skill Statistics) and AUC (the Area under the curve) value of ROC (receiver operating characteristic) analyses. To reduce model uncertainty, we combined 9 single SDMs weighted by TSS and resulted in an ensemble forecast, a TSS weighted ensemble. We predicted future distributions of Hedera rhombea under future climate conditions for the period of 2050 (2040~2060), which were estimated with HadGEM2-AO. RF (Random Forest), GBM (Generalized Boosted Model) and TSS weighted ensemble model showed higher prediction accuracies (AUC > 0.95, TSS > 0.80) than other SDMs. Based on the projections of TSS weighted ensemble, potential habitats under current climate conditions showed a discrepancy with actual habitats, especially in the northern distribution limit. The observed northern boundary of Hedera rhombea is Ulsan in the eastern Korean Peninsula, but the projected limit was eastern coast of Gangwon province. Geomorphological conditions and the dispersal limitations mediated by birds, the lack of bird habitats at eastern coast of Gangwon Province, account for such discrepancy. In general, potential habitats of Hedera rhombea expanded under future climate conditions, but the extent of expansions depend on RCP scenarios. Potential Habitat of Hedera rhombea expanded into Jeolla-inland area under RCP 4.5, and into Chungnam and Wonsan under RCP 8.5. Our results would be fundamental information for understanding the potential effects of climate change on the distribution of Hedera rhombea.
Primer $Sj{\ddot{o}}gren's$ Syndrome (pSS) is an autoimmune/inflammatory illness. The platelet indices (PIs) indicate the inflammatory response and activity/severity of many diseases. A vitamin D deficiency is accompanied by the increased tendency of autoimmune diseases. This study investigated whether the vitamin D levels are related to the altered platelet indices in pSS. A total of 261 individuals were included in this analytical cross-sectional study. The laboratory data of pSS patients were evaluated and the relationship between the PIs and vitamin D status was examined. According to these findings, in patients with pSS, the vitamin D levels were lower than the healthy control group (P<0.05). The vitamin D levels were negatively associated with PDW (P=0.012), but positively correlated with PCT (P<0.001). The cut-off point was obtained with receiver operating characteristics (ROC) curves for PDW: 12.53 (AUC 0.921, sensitivity 90%, specificity 85%), for PCT; 0.29 (AUC 0.660, sensitivity 68%, specificity 55%). In multivariate linear regression analysis, the most significant parameters for the effects of PDW are the following: vitamin D (${\beta}=-0.373$; t=-2.626; sig.=0.013) and plateletcrit (${\beta}=-0.308$; t=-2.13; sig.=0.040). A vitamin D deficiency may be accompanied by changes in PIs in pSS. A higher PDW and lower PCT supports the underlying inflammation, which may be vitamin D related useful parameters to consider in approaching to pSS.
Data with a large difference in the number of objects between clusters are called unbalanced data. In discriminant analysis of unbalanced data, it is more important to classify objects in minority categories than to classify objects in majority categories well. However, objects in minority categories are often misclassified into majority categories. In this study, we propose a method that combined hierarchical DBSCAN (HDBSCAN) and SMOTE to solve this problem. Using HDBSCAN, it removes noise in minority categories and majority categories. Then it applies SMOTE to create new data. Area under the roc curve (AUC) and F1 scores were used to compare performance with existing methods. As a result, in most cases, the method combining HDBSCAN and synthetic minority oversampling technique (SMOTE) showed a high performance index, and it was found to be an excellent method for classifying unbalanced data.
Jun Young, Park;Young Jae, Kim;Jisup, Kim;Kwang Gi, Kim
Journal of Biomedical Engineering Research
/
v.44
no.1
/
pp.25-32
/
2023
Recognizing the size and location of prostate cancer is critical for prostate cancer diagnosis, treatment, and predicting prognosis. This paper proposes a model to classify the tumor region and normal tissue with cross-sectional visual images of prostatectomy tissue. We used specimen images of 44 prostate cancer patients who received prostatectomy at Gachon University Gil Hospital. A total of 289 prostate slice images consist of 200 slices including tumor region and 89 slices not including tumor region. Images were divided based on the presence or absence of tumor, and a total of 93 features from each slice image were extracted using Radiomics: 18 first order, 24 GLCM, 16 GLRLM, 16 GLSZM, 5 NGTDM, and 14 GLDM. We compared feature selection techniques such as LASSO, ANOVA, SFS, Ridge and RF, LR, SVM classifiers for the model's high performances. We evaluated the model's performance with AUC of the ROC curve. The results showed that the combination of feature selection techniques LASSO, Ridge, and classifier RF could be best with an AUC of 0.99±0.005.
We developed the Aviation Convective Index (ACI) for predicting deep convective area using the operational global Numerical Weather Prediction model of the Korea Meteorological Administration. Seasonally optimized ACI (ACISnOpt) was developed to consider seasonal variabilities on deep convections in Korea. Yearly optimized ACI (ACIYrOpt) in Part 1 showed that seasonally averaged values of Area Under the ROC Curve (AUC) and True Skill Statistics (TSS) were decreased by 0.420% and 5.797%, respectively, due to the significant degradation in winter season. In Part 2, we developed new membership function (MF) and weight combination of input variables in the ACI algorithm, which were optimized in each season. Finally, the seasonally optimized ACI (ACISnOpt) showed better performance skills with the significant improvements in AUC and TSS by 0.983% and 25.641% respectively, compared with those from the ACIYrOpt. To confirm the improvements in new algorithm, we also conducted two case studies in winter and spring with observed Convectively-Induced Turbulence (CIT) events from the aircraft data. In these cases, the ACISnOpt predicted a better spatial distribution and intensity of deep convection. Enhancements in the forecast fields from the ACIYrOpt to ACISnOpt in the selected cases explained well the changes in overall performance skills of the probability of detection for both "yes" and "no" occurrences of deep convection during 1-yr period of the data. These results imply that the ACI forecast should be optimized seasonally to take into account the variabilities in the background conditions for deep convections in Korea.
International Journal of Computer Science & Network Security
/
v.24
no.10
/
pp.1-16
/
2024
Due to its complexity and high diagnosis and treatment costs, heart attack (HA) is the top cause of death globally. Heart failure's widespread effect and high morbidity and death rates make accurate and fast prognosis and diagnosis crucial. Due to the complexity of medical data, early and accurate prediction of HA is difficult. Healthcare providers must evaluate data quickly and accurately to intervene. This novel hybrid approach predicts HA using Long Short-Term Memory (LSTM) networks, Deep belief networks (DBNs) with attention mechanism, and robust data mining to fill this essential gap. HA is predicted using Kaggle, PhysioNet, and UCI datasets. Wearable sensor data, ECG signals, and demographic and clinical data provide a solid analytical base. To maintain consistency, ECG signals are normalized and segmented after thorough cleaning to remove missing values and noise. Feature extraction employs complex approaches like Principal Component Analysis (PCA) and Autoencoders to pick time-domain (MNN, SDNN, RMSSD, PNN50) and frequency-domain (PSD at VLF, LF, HF bands) characteristics. The hybrid model architecture uses LSTM networks for sequence learning and DBNs for feature representation and selection to create a robust and comprehensive prediction model. Accuracy, precision, recall, F1-score, and ROC-AUC are measured after cross-entropy loss and SGD optimization. The LSTM-DBN model outperforms predictive methods in accuracy, sensitivity, and specificity. The findings show that several data sources and powerful algorithms can improve heart attack predictions. The proposed architecture performed well on many datasets, with an accuracy rate of 96.00%, sensitivity of 98%, AUC of 0.98, and F1-score of 0.97. High performance proves this system's dependability. Moreover, the proposed approach is outperformed compared to state-of-the-art systems.
Background: To determine the potential value of serum tumor markers in predicting pCR (pathological complete response) during neoadjuvant chemotherapy. Materials and Methods: We retrospectively monitored the pro-, mid-, and post-neoadjuvant treatment serum tumor marker concentrations in patients with locally advanced breast cancer (stage II-III) who accepted pre-surgical chemotherapy or chemotherapy in combination with targeted therapy at Fudan University Shanghai Cancer Center between September 2011 and January 2014 and investigated the association of serum tumor marker levels with therapeutic effect. Core needle biopsy samples were assessed using immunohistochemistry (IHC) prior to neoadjuvant treatment to determine hormone receptor, human epidermal growth factor receptor 2(HER2), and proliferation index Ki67 values. In our study, therapeutic response was evaluated by pCR, defined as the disappearance of all invasive cancer cells from excised tissue (including primary lesion and axillary lymph nodes) after completion of chemotherapy. Analysis of variance of repeated measures and receiver operating characteristic (ROC) curves were employed for statistical analysis of the data. Results: A total of 348 patients were recruited in our study after excluding patients with incomplete clinical information. Of these, 106 patients were observed to have acquired pCR status after treatment completion, accounting for approximately 30.5% of study individuals. In addition, 147patients were determined to be Her-2 positive, among whom the pCR rate was 45.6% (69 patients). General linear model analysis (repeated measures analysis of variance) showed that the concentration of cancer antigen (CA) 15-3 increased after neoadjuvant chemotherapy in both pCR and non-pCR groups, and that there were significant differences between the two groups (P=0.008). The areas under the ROC curves (AUCs) of pre-, mid-, and post-treatment CA15-3 concentrations demonstrated low-level predictive value (AUC=0.594, 0.644, 0.621, respectively). No significant differences in carcinoembryonic antigen (CEA) or CA12-5 serum levels were observed between the pCR and non-pCR groups (P=0.196 and 0.693, respectively). No efficient AUC of CEA or CA12-5 concentrations were observed to predict patient response toward neoadjuvant treatment (both less than 0.7), nor were differences between the two groups observed at different time points. We then analyzed the Her-2 positive subset of our cohort. Significant differences in CEA concentrations were identified between the pCR and non-pCR groups (P=0.039), but not in CA15-3 or CA12-5 levels (p=0.092 and 0.89, respectively). None of the ROC curves showed underlying prognostic value, as the AUCs of these three markers were less than 0.7. The ROC-AUCs for the CA12-5 concentrations of inter-and post-neoadjuvant chemotherapy in the estrogen receptor negative HER2 positive subgroup were 0.735 and 0.767, respectively. However, the specificity and sensitivity values were at odds with each other which meant that improving either the sensitivity or specificity would impair the efficiency of the other. Conclusions: Serum tumor markers CA15-3, CA12-5, and CEA might have little clinical significance in predicting neoadjuvant treatment response in locally advanced breast cancer.
Donghyeon Kim;Song Eu;Kwangyoun Lee;Sukhee Yoon;Jongseo Lee;Donggeun Kim
Journal of the Korea Society of Computer and Information
/
v.29
no.9
/
pp.125-136
/
2024
This study presents an automated Python algorithm for analyzing rainfall characteristics to establish critical rainfall thresholds as part of a landslide early warning system. Rainfall data were sourced from the Korea Meteorological Administration's Automatic Weather System (AWS) and the Korea Forest Service's Automatic Mountain Observation System (AMOS), while landslide data from 2020 to 2023 were gathered via the Life Safety Map. The algorithm involves three main steps: 1) processing rainfall data to correct inconsistencies and fill data gaps, 2) identifying the nearest observation station to each landslide location, and 3) conducting statistical analysis of rainfall characteristics. The analysis utilized power law and nonlinear regression, yielding an average R2 of 0.45 for the relationships between rainfall intensity-duration, effective rainfall-duration, antecedent rainfall-duration, and maximum hourly rainfall-duration. The critical thresholds identified were 0.9-1.4 mm/hr for rainfall intensity, 68.5-132.5 mm for effective rainfall, 81.6-151.1 mm for antecedent rainfall, and 17.5-26.5 mm for maximum hourly rainfall. Validation using AUC-ROC analysis showed a low AUC value of 0.5, highlighting the limitations of using rainfall data alone to predict landslides. Additionally, the algorithm's speed performance evaluation revealed a total processing time of 30 minutes, further emphasizing the limitations of relying solely on rainfall data for disaster prediction. However, to mitigate loss of life and property damage due to disasters, it is crucial to establish criteria using quantitative and easily interpretable methods. Thus, the algorithm developed in this study is expected to contribute to reducing damage by providing a quantitative evaluation of critical rainfall thresholds that trigger landslides.
Purpose: Although automatic quantification software of myocardial perfusion SPECT provides highly objective and reproducible quantitative measurements, there is still some limitation in the direct use of quantitative measurements. In this study we derived parameters using normal variation of perfusion measurements, and tried to test the usefulness of these parameters. Materials and Methods: In order to calculate normal variation of perfusion measurements on myocardial perfusion SPECT, 55 patients (M:F = 28:27) of low-likelihood for coronary artery disease were enrolled and $^{201}TI$ rest/$^{99m}Tc$-MIBI stress SPECT studies were performed. Using 20-segment model, mean (m) and standard deviation (SD) of perfusion were calculated in each segment. As a myocardial viability assessment group, another 48 patients with known coronary artery disease, who underwent coronary artery bypass graft surgery (CABG) were enrolled. $^{201}TI$ rest/$^{99m}Tc$-MIBI stress / $^{201}TI$ 24-hr delayed SPECT was performed before CABG and SPECT was followed up 3 months after CABG. From the preoperative 24-hr delayed SPECT, $Q_{delay}$ (perfusion measurement), ${\Delta}_{delay}$ ($Q_{delay}$ - m) and $Z_{delay}$ (($Q_{delay}$ - m)/SD) were defined and diagnostic performances of them for myocardial viability were evaluated using area under curve (AUC) on receiver operating characteristic (ROC) curve analysis. Results: Segmental perfusion measurements showed considerable normal variations among segments. In men, the lowest segmental perfusion measurement was $51.8{\pm}6.5$ and the highest segmental perfusion was $87.0{\pm}5.9$, and they are $58.7{\pm}8.1$ and $87.3{\pm}6.0$, respectively in women. In the viability assessment $Q_{delay}$ showed AUC of 0.633, while those for ${\Delta}_{delay}$ and $Z_{delay}$ were 0.735 and 0.716, respectively. The AUCs of ${\Delta}_{delay}$ and $Z_{delay}$ were significantly higher than that of $Q_{delay}$ (p = 0.001 and 0.018, respectively). The diagnostic performance of ${\Delta}_{delay}$, which showed highest AUC, was 85% of sensitivity and 53% of specificity at the optimal cutoff of -24.7. Conclusion: On automatic quantification of myocardial perfusion SPECT, the normal variation of perfusion measurements were considerable among segments. In the viability assessment, the parameters considering normal variation showed better diagnostic performance than the direct perfusion measurement. This study suggests that consideration of normal variation is important in the analysis of measurements on quantitative myocardial perfusion SPECT.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.