• Title/Summary/Keyword: RNN LM

Search Result 3, Processing Time 0.02 seconds

Class Language Model based on Word Embedding and POS Tagging (워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구)

  • Chung, Euisok;Park, Jeon-Gue
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.7
    • /
    • pp.315-319
    • /
    • 2016
  • Recurrent neural network based language models (RNN LM) have shown improved results in language model researches. The RNN LMs are limited to post processing sessions, such as the N-best rescoring step of the wFST based speech recognition. However, it has considerable vocabulary problems that require large computing powers for the LM training. In this paper, we try to find the 1st pass N-gram model using word embedding, which is the simplified deep neural network. The class based language model (LM) can be a way to approach to this issue. We have built class based vocabulary through word embedding, by combining the class LM with word N-gram LM to evaluate the performance of LMs. In addition, we propose that part-of-speech (POS) tagging based LM shows an improvement of perplexity in all types of the LM tests.

Robustness of Differentiable Neural Computer Using Limited Retention Vector-based Memory Deallocation in Language Model

  • Lee, Donghyun;Park, Hosung;Seo, Soonshin;Son, Hyunsoo;Kim, Gyujin;Kim, Ji-Hwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.837-852
    • /
    • 2021
  • Recurrent neural network (RNN) architectures have been used for language modeling (LM) tasks that require learning long-range word or character sequences. However, the RNN architecture is still suffered from unstable gradients on long-range sequences. To address the issue of long-range sequences, an attention mechanism has been used, showing state-of-the-art (SOTA) performance in all LM tasks. A differentiable neural computer (DNC) is a deep learning architecture using an attention mechanism. The DNC architecture is a neural network augmented with a content-addressable external memory. However, in the write operation, some information unrelated to the input word remains in memory. Moreover, DNCs have been found to perform poorly with low numbers of weight parameters. Therefore, we propose a robust memory deallocation method using a limited retention vector. The limited retention vector determines whether the network increases or decreases its usage of information in external memory according to a threshold. We experimentally evaluate the robustness of a DNC implementing the proposed approach according to the size of the controller and external memory on the enwik8 LM task. When we decreased the number of weight parameters by 32.47%, the proposed DNC showed a low bits-per-character (BPC) degradation of 4.30%, demonstrating the effectiveness of our approach in language modeling tasks.

Identification of Finite Automata Using Recurrent Neural Networks

  • Won, Sung-Hwan;Park, Cheol-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.667-668
    • /
    • 2008
  • This paper demonstrates that the recurrent neural networks can be used successfully for the identification of finite automata (FAs). A new type of recurrent neural network (RNN) is proposed and the offline training algorithm, regulated Levenberg-Marquadt (LM) algorithm, for the network is developed. Simulation result shows that the identification and the extraction of FAs are practically achievable.

  • PDF