• Title/Summary/Keyword: RNN(Recurrent Neural Network)

Search Result 231, Processing Time 0.03 seconds

Photovoltaic Prediction System based on Recurrent Neural Network (순환신경망 기반 태양광 발전량 예측 시스템)

  • Jung, Seolryung;Park, Kyoungwook;Koh, Jingwang;Lee, Sungkeun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.849-852
    • /
    • 2021
  • 화석연료의 빈번한 사용으로 인한 지구온난화 문제가 심각해지면서 화석연료를 대체할 수 있는 신재생 에너지가 떠오르고 있다. 그중에서도 에너지원이 청정하고 무제한으로 사용할 수 있다는 장점을 가진 태양광 발전소가 주목을 받고 있다. 하지만 기후에 따라 영향을 많이 받는 특징 때문에 안정적인 전력 생산을 위해서는 태양광 발전량 예측이 매우 중요해지고 있다. 본 논문에서는 시계열 데이터에 특화된 순환신경망 기법인 RNN과 LSTM 모델을 이용하여 태양광 발전량을 예측하고 각 모델의 하이퍼 파라미터를 다르게 주어 비교 분석하였다. 그 결과 LSTM 모델이 RNN 모델보다 높은 예측력을 보였고, 손실 값이 0.1보다 낮은 높은 정확도를 보였다.

Coreference Resolution for Korean Pronouns using Pointer Networks (포인터 네트워크를 이용한 한국어 대명사 상호참조해결)

  • Park, Cheoneum;Lee, Changki
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.496-502
    • /
    • 2017
  • Pointer Networks is a deep-learning model for the attention-mechanism outputting of a list of elements that corresponds to the input sequence and is based on a recurrent neural network (RNN). The coreference resolution for pronouns is the natural language processing (NLP) task that defines a single entity to find the antecedents that correspond to the pronouns in a document. In this paper, a pronoun coreference-resolution method that finds the relation between the antecedents and the pronouns using the Pointer Networks is proposed; furthermore, the input methods of the Pointer Networks-that is, the chaining order between the words in an entity-are proposed. From among the methods that are proposed in this paper, the chaining order Coref2 showed the best performance with an F1 of MUC 81.40 %. The method showed performances that are 31.00 % and 19.28 % better than the rule-based (50.40 %) and statistics-based (62.12 %) coreference resolution systems, respectively, for the Korean pronouns.

Video Content Editing System for Senior Video Creator based on Video Analysis Techniques (영상분석 기술을 활용한 시니어용 동영상 편집 시스템)

  • Jang, Dalwon;Lee, Jaewon;Lee, JongSeol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.499-510
    • /
    • 2022
  • This paper introduces a video editing system for senior creator who is not familiar to video editing. Based on video analysis techniques, it provide various information and delete unwanted shot. The system detects shot boundaries based on RNN(Recurrent Neural Network), and it determines the deletion of video shots. The shots can be deleted using shot-level significance, which is computed by detecting focused area. It is possible to delete unfocused shots or motion-blurred shots using the significance. The system detects object and face, and extract the information of emotion, age, and gender from face image. Users can create video contents using the information. Decorating tools are also prepared, and in the tools, the preferred design, which is determined from user history, places in the front of the design element list. With the video editing system, senior creators can make their own video contents easily and quickly.

A novel method for predicting protein subcellular localization based on pseudo amino acid composition

  • Ma, Junwei;Gu, Hong
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.670-676
    • /
    • 2010
  • In this paper, a novel approach, ELM-PCA, is introduced for the first time to predict protein subcellular localization. Firstly, Protein Samples are represented by the pseudo amino acid composition (PseAAC). Secondly, the principal component analysis (PCA) is employed to extract essential features. Finally, the Elman Recurrent Neural Network (RNN) is used as a classifier to identify the protein sequences. The results demonstrate that the proposed approach is effective and practical.

Robustness of Data Mining Tools under Varting Levels of Noise:Case Study in Predicting a Chaotic Process

  • Kim, Steven H.;Lee, Churl-Min;Oh, Heung-Sik
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.1
    • /
    • pp.109-141
    • /
    • 1998
  • Many processes in the industrial realm exhibit sstochastic and nonlinear behavior. Consequently, an intelligent system must be able to nonlinear production processes as well as probabilistic phenomena. In order for a knowledge based system to control a manufacturing processes as well as probabilistic phenomena. In order for a knowledge based system to control manufacturing process, an important capability is that of prediction : forecasting the future trajectory of a process as well as the consequences of the control action. This paper examines the robustness of data mining tools under varying levels of noise while predicting nonlinear processes, includinb chaotic behavior. The evaluated models include the perceptron neural network using backpropagation (BPN), the recurrent neural network (RNN) and case based reasoning (CBR). The concepts are crystallized through a case study in predicting a chaotic process in the presence of various patterns of noise.

  • PDF

Deepfake Detection using Supervised Temporal Feature Extraction model and LSTM (지도 학습한 시계열적 특징 추출 모델과 LSTM을 활용한 딥페이크 판별 방법)

  • Lee, Chunghwan;Kim, Jaihoon;Yoon, Kijung
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • fall
    • /
    • pp.91-94
    • /
    • 2021
  • As deep learning technologies becoming developed, realistic fake videos synthesized by deep learning models called "Deepfake" videos became even more difficult to distinguish from original videos. As fake news or Deepfake blackmailing are causing confusion and serious problems, this paper suggests a novel model detecting Deepfake videos. We chose Residual Convolutional Neural Network (Resnet50) as an extraction model and Long Short-Term Memory (LSTM) which is a form of Recurrent Neural Network (RNN) as a classification model. We adopted cosine similarity with hinge loss to train our extraction model in embedding the features of Deepfake and original video. The result in this paper demonstrates that temporal features in the videos are essential for detecting Deepfake videos.

  • PDF

Malware Classification Possibility based on Sequence Information (순서 정보 기반 악성코드 분류 가능성)

  • Yun, Tae-Uk;Park, Chan-Soo;Hwang, Tae-Gyu;Kim, Sung Kwon
    • Journal of KIISE
    • /
    • v.44 no.11
    • /
    • pp.1125-1129
    • /
    • 2017
  • LSTM(Long Short-term Memory) is a kind of RNN(Recurrent Neural Network) in which a next-state is updated by remembering the previous states. The information of calling a sequence in a malware can be defined as system call function that is called at each time. In this paper, we use calling sequences of system calls in malware codes as input for malware classification to utilize the feature remembering previous states via LSTM. We run an experiment to show that our method can classify malware and measure accuracy by changing the length of system call sequences.

A Cell-wise Approximation of Activation Function for Efficient Privacy-preserving Recurrent Neural Network (효율적인 프라이버시 보존형 순환신경망을 위한 활성화함수의 cell-wise 근사)

  • Youyeon Joo;Kevin Nam;Seungjin Ha;Yunheung Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.408-411
    • /
    • 2024
  • 원격 환경에서의 안전한 데이터 처리를 위한 기술 중 동형암호는 암호화된 데이터 간의 연산을 통한 프라이버시 보존형 연산이 가능하여 최근 딥러닝 연산을 동형암호로 수행하고자 하는 연구가 활발히 진행되고 있다. 그러나 동형암호는 신경망에 존재하는 비산술 활성화함수를 직접적으로 연산할 수 없어 다항함수로 대체하여 연산해야만 하는데, 이로 인해 모델의 정확도가 하락하거나 과도한 연산 부하가 발생하는 등의 비효율성 문제가 발생한다. 본 연구에서는 모델 내의 활성화함수를 서로 다르게 근사하는 접근을 순환신경망(Recurrent Neural Network, RNN)에 적용하여 효율적인 동형암호 연산을 수행하는 방법을 제안하고자 한다.

Deep Learning-based Prediction of PM10 Fluctuation from Gwanak-gu Urban Area, Seoul, Korea (서울 관악구 도심지역 미세먼지(PM10) 관측 값을 활용한 딥러닝 기반의 농도변동 예측)

  • Choi, Han-Soo;Kang, Myungjoo;Kim, Yong Cheol;Choi, Hanna
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.74-83
    • /
    • 2020
  • Since fine dust (PM10) has a significant influence on soil and groundwater composition during dry and wet deposition processes, it is of a vital importance to understand the fate and transport of aerosol in geological environments. Fine dust is formed after the chemical reaction of several precursors, typically observed in short intervals within a few hours. In this study, deep learning approach was applied to predict the fate of fine dust in an urban area. Deep learning training was performed by combining convolutional neural network (CNN) and recurrent neural network (RNN) techniques. The PM10 concentration after 1 hour was predicted based on three-hour data by setting SO2, CO, O3, NO2, and PM10 as training data. The obtained coefficient of determination value, R2, was 0.8973 between predicted and measured values for the entire concentration range of PM10, suggesting deep learning method can be developed into a reliable and viable tool for prediction of fine dust concentration.

A Baltic Dry Index Prediction using Deep Learning Models

  • Bae, Sung-Hoon;Lee, Gunwoo;Park, Keun-Sik
    • Journal of Korea Trade
    • /
    • v.25 no.4
    • /
    • pp.17-36
    • /
    • 2021
  • Purpose - This study provides useful information to stakeholders by forecasting the tramp shipping market, which is a completely competitive market and has a huge fluctuation in freight rates due to low barriers to entry. Moreover, this study provides the most effective parameters for Baltic Dry Index (BDI) prediction and an optimal model by analyzing and comparing deep learning models such as the artificial neural network (ANN), recurrent neural network (RNN), and long short-term memory (LSTM). Design/methodology - This study uses various data models based on big data. The deep learning models considered are specialized for time series models. This study includes three perspectives to verify useful models in time series data by comparing prediction accuracy according to the selection of external variables and comparison between models. Findings - The BDI research reflecting the latest trends since 2015, using weekly data from 1995 to 2019 (25 years), is employed in this study. Additionally, we tried finding the best combination of BDI forecasts through the input of external factors such as supply, demand, raw materials, and economic aspects. Moreover, the combination of various unpredictable external variables and the fundamentals of supply and demand have sought to increase BDI prediction accuracy. Originality/value - Unlike previous studies, BDI forecasts reflect the latest stabilizing trends since 2015. Additionally, we look at the variation of the model's predictive accuracy according to the input of statistically validated variables. Moreover, we want to find the optimal model that minimizes the error value according to the parameter adjustment in the ANN model. Thus, this study helps future shipping stakeholders make decisions through BDI forecasts.