• Title/Summary/Keyword: RNF152

Search Result 3, Processing Time 0.018 seconds

RNF152 negatively regulates Wnt/β-catenin signaling in Xenopus embryos

  • Yoon, Gang-Ho;Kim, Kyuhee;Park, Dong-Seok;Choi, Sun-Cheol
    • BMB Reports
    • /
    • v.55 no.5
    • /
    • pp.232-237
    • /
    • 2022
  • The Wnt/β-catenin signaling plays crucial roles in early development, tissue homeostasis, stem cells, and cancers. Here, we show that RNF152, an E3 ligase localized to lysosomes, acts as a negative regulator of the Wnt/β-catenin pathway during Xenopus early embryogenesis. Overexpression of wild-type (WT) RNF152 inhibited XWnt8-induced stabilization of β-catenin, ectopic expression of target genes, and activity of a Wnt-responsive promoter. Likewise, an E3 ligase-defective RNF152 had repressive effects on the Wnt-dependent gene responses but not its truncation mutant lacking the transmembrane domain. Conversely, knockdown of RNF152 further enhanced the transcriptional responses induced by XWnt8. RNF152 morphants exhibited defects in craniofacial structures and pigmentation. In line with this, the gain-of-RNF152 function interfered with the expression of neural crest (NC) markers, whereas its depletion up-regulated NC formation in the early embryo. Mechanistically, RNF152 inhibits the polymerization of Dishevelled, which is key to Wnt signaling, in an E3 ligase-independent manner. Together, these results suggest that RNF152 controls negatively Wnt/β-catenin signaling to fine-tune its activity for NC formation in Xenopus embryo.

Rnf152 Is Essential for NeuroD Expression and Delta-Notch Signaling in the Zebrafish Embryos

  • Kumar, Ajeet;Huh, Tae-Lin;Choe, Joonho;Rhee, Myungchull
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.945-953
    • /
    • 2017
  • We report the biological functions of a zebrafish homologue of RING-finger protein 152 (rnf152) during embryogenesis. rnf152 was initially identified as a brain-enriched E3 ligase involved in early embryogenesis of zebrafish. Expression of rnf152 was ubiquitous in the brain at 24 hpf but restricted to the eyes, midbrain-hindbrain boundary (MHB), and rhombomeres at 48 hpf. Knockdown of rnf152 in zebrafish embryos caused defects in the eyes, MHB, and rhombomeres (r1-7) at 24 hpf. These defects in rnf152-deficient embryos were analyzed by whole-mount in situ hybridization (WISH) using neuroD, deltaD, notch1a, and notch3 probes. NeuroD expression was abolished in the marginal zone, outer nuclear layer (ONL), inner nuclear layer (INL), and ganglion cell layer (GCL) of the eyes at 27 hpf. Furthermore, deltaD and notch1a expression was remarkably reduced in the ONL, INL, subpallium, tectum, cerebellum, and rhombomeres (r1-7) at 24 hpf, whereas notch3 expression was reduced in the tectum, cerebellum, and rhombomeres at 24 hpf. Finally, we confirmed that expression of Notch target genes, her4 and ascl1a, also decreased significantly in these areas at 24 hpf. Thus, we propose that Rnf152 is essential for development of the eyes, midbrain and hindbrain, and that Delta-Notch signaling is involved.

Gene Expression Profile in Carpal Tunnel Syndrome Patients

  • Kim, Hye-Won;Kim, Ki-Nam;Seo, Sang-Hui;Lee, Seung-Ho;Sohn, Sung-Hwa;Kim, Yu-Ri;HaLee, Young-Mie;Shim, Jae-Sun;Ahn, Duck-Sun;Kim, Meyoung-Kon
    • Molecular & Cellular Toxicology
    • /
    • v.2 no.4
    • /
    • pp.266-272
    • /
    • 2006
  • Carpal tunnel syndrome (CTS) is one of the most common disorders by under pressure of the median nerve at the wrist in these days. However, pathological mechanism of CTS is unknown. We carried out this study to identify the changes of gene expression and to evaluate possible mechanism in CTS. 120 CTS patients and 30 control patients were included in this study. Patients with a history of diabetes, hypertension, thyroid diseases, and arthritis were excluded. CTS patients were divided to three experimental groups-Mild, Moderate, and Severe group-according to elecrodiagnosis. Radioactive cDNA microarrays (Nylon membrane including 1,152 genes) were used to examine the difference of gene expression profile in CTS. We identified up-regulated genes by more than 2.0 value of z-ratio, and down-regulated genes by less than-2.0 value of z-ratio. 20 genes such as the ITGAL, ITGAM, PECAM1, VIL2, TGFBR2, RAB7, RNF5 and NFKB1 were up-regulated, and 28 genes such as PRG5, CASP8, CDH1, IGFBP5, CBX3, HREV107, PIN, and WINT2 were down-regulated. These genes were related with TGF beta signaling pathway, NF-Kb signaling pathway, antiapoptotic pathway and T cell receptor signaling pathway. However, there were no differences in gene expression profiles according to severities of symptoms. We suggest that CTS could be related with proinflammatory mechanism and antiapoptotic mechanism.