• Title/Summary/Keyword: RNA-recognizing antibody

Search Result 2, Processing Time 0.017 seconds

Identifying the cellular location of brain cytoplasmic 200 RNA using an RNA-recognizing antibody

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Ohn, Takbum;Lee, Younghoon
    • BMB Reports
    • /
    • v.50 no.6
    • /
    • pp.318-322
    • /
    • 2017
  • Brain cytoplasmic 200 RNA (BC200 RNA) is a neuron-specific non-coding RNA, implicated in the inhibition of local synaptodendritic protein synthesis, and is highly expressed in some cancer cells. Although BC200 RNA has been shown to inhibit translation in vitro, the cellular location of this inhibition is unknown. In this study, we used a BC200 RNA-recognizing antibody to identify the cellular locations of BC200 RNA in HeLa cervical carcinoma cells. We observed punctate signals in both the cytoplasm and nucleus, and further discovered that BC200 RNA co-localized with the p-body decapping enzyme, DCP1A, and the heterogeneous nuclear ribonucleoprotein E2 (hnRNP E2). The latter is a known BC200 RNA-binding partner protein and a constituent of p-bodies. This suggests that BC200 RNA is localized to p-bodies via hnRNP E2.

Production of the Polyclonal Antibody That Recognizes the Mutant M Protein of Japanese Encephalitis Virus: Role of Its Charged Residues in Virus Production (일본뇌염바이러스의 Mutant M 단백질에 반응하는 다클론항체의 생산: 극성 아미노산 잔기의 바이러스 생산과정에서의 역할)

  • Kim, Jeong-Min;Yun, Sang-Im;Song, Byung-Hak;Kim, Jin-Kyoung;Lee, Young-Min
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.140-147
    • /
    • 2010
  • Japanese encephalitis virus (JEV), a member of the mosquito-borne flaviviruses, causes epidemics of viral encephalitis in the Southeastern Asia. JEV is a small enveloped virus with a positive-sense RNA genome; the infectious virion consists of three structural proteins, namely capsid, membrane (M; a mature form of its prM precursor), and envelope proteins. Here, we investigated a role of the charged residues found at the N-terminus of the JEV M protein in virus production. Using an infectious JEV cDNA, we generated two mutant cDNAs, Mm1 and Mm2, by charged-to-alanine substitution for $E^9$ and $K^{15}K^{16}E^{17}$ residues of the M protein, respectively. By transfection of wild-type or each of the two mutant RNAs transcribed from the corresponding cDNAs, we found that Mm2, but not Mm1, had a ~3-log decrease in virus production, even though a comparable amount of all three structural proteins were produced in transfected cells. Interestingly, the prM protein expressed in Mm2 RNA-transfected cells was not recognized by the polyclonal antiserum raised against the N-terminal 44 amino acids of the wild type M protein, but reacted to the antiserum raised against the corresponding region of the mutant Mm2. Our results indicate that three charged residues ($K^{15}K^{16}E^{17}$) in JEV M protein play a role in virus production. Two polyclonal antisera specifically recognizing the wild-type or Mm2 version of the M protein would provide a useful reagent for the functional study of this protein in the virus life cycle.