• 제목/요약/키워드: RNA-protein interactions

검색결과 111건 처리시간 0.026초

SNU-16 위암 세포의 mRNA 및 miRNA 프로파일에 미치는 제주조릿대 추출물의 영향 (Effects of Sasa quelpaertensis Extract on mRNA and microRNA Profiles of SNU-16 Human Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제30권6호
    • /
    • pp.501-512
    • /
    • 2020
  • 제주조릿대 잎은 항염, 해열 및 이뇨작용을 가지고 있어 위궤양, 목마름 및 토혈 치료를 위한 민간의약으로 사용되어 왔다. 본 저자들은 제주조리대 잎에서 분리한 피토케미칼 풍부 추출물(PRE)과 그 에틸아세테이트 분획물(EPRE)은 여러 위암 세포주에서 세포사멸을 유도하는 항암 효과가 있다고 보고한 바 있다. 본 연구는 EPRE의 세포사멸 유도 기전에 관여하는 분자표적들을 탐색하기 위하여 EPRE을 처리한 SNU-16 세포에서 mRNA와 microRNA (miRNA)의 프로파일 변화를 분석하였다. RNA sequencing 분석을 통해 총 2,875개의 차등적으로 발현되는 유전자들(DEGs)을 동정하였다. 유전자 온톨로지(GO)와 KEGG 경로 분석 결과, EPRE는 세포사멸, 유사 분열-활성화 단백질 키나제(MAPK) 및 염증 반응, 종양 괴사 인자(TNF) 신호 전달 및 암 경로에 관여하는 유전자들의 발현을 조절하는 것으로 나타났다. 단백질-단백질 상호 작용(PPI) 네트워크 분석으로 세포사멸 및 세포죽음과 관련된 유전자들 간의 상호작용들을 확인할 수 있었다. 그리고, miRNA sequencing 분석을 통해 총 27개의 차별적으로 발현되는 miRNAs (DEMs)를 동정하였다. GO와 KEGG 경로 분석 결과, EPRE는 세포주기, 세포사멸 및 tropomyosin-receptor-kinase (TRK) 수용체 신호 전달, 성장인자-β(TGF-β), 핵인자 κB (NF-κB) 및 암 경로에 관여하는 miRNAs의 발현을 조정하였다. 본 연구결과는 EPRE의 항암 효과의 근본적인 메커니즘에 대한 통찰력을 제공한다.

Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis

  • Ding, He;Gong, Pengtao;Yang, Ju;Li, Jianhua;Li, He;Zhang, Guocai;Zhang, Xichen
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.121-128
    • /
    • 2017
  • Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected ($V^+$) and uninfected ($V^-$) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in $V^+$ compared with $V^-$ isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in $V^+$ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in $V^+$ and $V^-$ isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.

Protein microarray를 이용한 APin-단백질의 상호작용에 관한 연구 (A STUDY OF APIN-PROTEIN INTERACTIONS USING PROTEIN MICROARRAY)

  • 박주철;박선화;김흥중;박종태;윤성호;김지웅;이태연;손호현
    • Restorative Dentistry and Endodontics
    • /
    • 제32권5호
    • /
    • pp.459-468
    • /
    • 2007
  • 이 연구에서는 법랑모세포 분화과정에서 APin의 기능을 알아보고자 APin-protein microarray를 시행한 후 치아발생과 관련이 있는 MEF2, Aurora kinase A, BMPR-IB와 EF-hand calcium binding protein을 분석하여 다음과 같은 결과를 얻었다. 1 CMV-APin construct를 transfection하여 APin의 과발현을 유도한 경우에는 MEF2와 Aurora kinase A 둘 모두에서 발현이 현저히 감소한 반면에, APin의 발현억제를 유도한 경우에는 둘 모두 변화가 없었다. 2. APin의 과발현을 유도한 경우에는 BMPR-IB와 EF-hand calcium binding protein 모두에서 발현이 크게 증가한 반면, APin을 발현억제 시킨 경우에는 BMPR-IB는 변화가 없었고, EF-hand calcium binding protein은 현저히 감소하였다. 위의 결과들로 보아 APin 단백질은 MEF2, Aurora kinase A, BMPR-IB, EF-hand calcium binding protein과 상호작용하여 법랑모세포의 분화와 석회화 과정 중에 중요한 역할을 하는 것으로 사료된다.

Nonstructural NS5A Protein Regulates LIM and SH3 Domain Protein 1 to Promote Hepatitis C Virus Propagation

  • Choi, Jae-Woong;Kim, Jong-Wook;Nguyen, Lap P.;Nguyen, Huu C.;Park, Eun-Mee;Choi, Dong Hwa;Han, Kang Min;Kang, Sang Min;Tark, Dongseob;Lim, Yun-Sook;Hwang, Soon B.
    • Molecules and Cells
    • /
    • 제43권5호
    • /
    • pp.469-478
    • /
    • 2020
  • Hepatitis C virus (HCV) propagation is highly dependent on cellular proteins. To identify the host factors involved in HCV propagation, we previously performed protein microarray assays and identified the LIM and SH3 domain protein 1 (LASP-1) as an HCV NS5A-interacting partner. LASP-1 plays an important role in the regulation of cell proliferation, migration, and protein-protein interactions. Alteration of LASP-1 expression has been implicated in hepatocellular carcinoma. However, the functional involvement of LASP-1 in HCV propagation and HCV-induced pathogenesis has not been elucidated. Here, we first verified the protein interaction of NS5A and LASP-1 by both in vitro pulldown and coimmunoprecipitation assays. We further showed that NS5A and LASP-1 were colocalized in the cytoplasm of HCV infected cells. NS5A interacted with LASP-1 through the proline motif in domain I of NS5A and the tryptophan residue in the SH3 domain of LASP-1. Knockdown of LASP1 increased HCV replication in both HCV-infected cells and HCV subgenomic replicon cells. LASP-1 negatively regulated viral propagation and thereby overexpression of LASP-1 decreased HCV replication. Moreover, HCV propagation was decreased by wild-type LASP-1 but not by an NS5A binding-defective mutant of LASP-1. We further demonstrated that LASP-1 was involved in the replication stage of the HCV life cycle. Importantly, LASP-1 expression levels were increased in persistently infected cells with HCV. These data suggest that HCV modulates LASP-1 via NS5A in order to regulate virion levels and maintain a persistent infection.

Protein Interaction Mapping of Translational Regulators Affecting Expression of the Critical Stem Cell Factor Nos

  • Malik, Sumira;Jang, Wijeong;Kim, Changsoo
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권4호
    • /
    • pp.449-456
    • /
    • 2017
  • The germline stem cells of the Drosophila ovary continuously produce eggs throughout the life-span. Intricate regulation of stemness and differentiation is critical to this continuous production. The translational regulator Nos is an intrinsic factor that is required for maintenance of stemness in germline stem cells. Nos expression is reduced in differentiating cells at the post-transcriptional level by diverse translational regulators. However, molecular mechanisms underlying Nos repression are not completely understood. Through three distinct protein-protein interaction experiments, we identified specific molecular interactions between translational regulators involved in Nos repression. Our findings suggest a model in which protein complexes assemble on the 3' untranslated region of Nos mRNA in order to regulate Nos expression at the post-transcriptional level.

Escherichia coli 16S rRNA 상의 770 위치에 염기치환을 가진 변이체 리보솜의 단백질 합성 능력을 회복시키는 이차복귀돌연변이체의 발췌 (Functional Analysis and Selection of Second-site Revertant of Escherichia coli 16S rRNA of C770G)

  • 하혜정;류상미;이강석;전체옥
    • 한국미생물·생명공학회지
    • /
    • 제39권1호
    • /
    • pp.93-96
    • /
    • 2011
  • 대장균의 16S rRNA 염기 중 진화적으로 매우 보존되어 있는 B2c 인터브리지의 구성요소 중 하나인 C770염기에 치환을 일으키면 단백질 합성이 저하되는 것으로 알려져 있다. 이 연구에서는 770 위치에 C에서 G로 염기치환(C770G)된 16S rRNA의 기능을 회복시키는 이차복귀돌연변이(secondsite revertant)를 얻기 위해 16S rRNA를 암호화하는 DNA 부분에 무작위로 염기치환을 유발시켜, 재조합 리보솜이 번역하는 CAT mRNA로부터의 단백질 합성능력이 향상된 클론을 선별하였다. 이 실험으로 C770G 염기치환을 가진 변이체 리보솜의 단백질 합성능력을 일부 회복시키는 하나의 이차복귀돌연변이체를 획득하였으며, DNA 염기분석을 통하여 C569G와 U904C 염기치환을 가진 것을 확인하였다. 이러한 연구결과를 이용하여 770 염기가 단백질 합성 과정에서 16S rRNA의 어떤 다른 부분과 결합을 하는지, 또한 그러한 결합으로 이루어지는 구조가 가지게 되는 기능은 무엇인지 등에 대한 리보솜의 구체적인 단백질 합성기작 연구에 도움이 될 것으로 기대한다.

Gene annotation by the "interactome"analysis in KEGG

  • Kanehisa, Minoru
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2000년도 International Symposium on Bioinformatics
    • /
    • pp.56-58
    • /
    • 2000
  • Post-genomics may be defined in different ways depending on how one views the challenges after the genome. A popular view is to follow the concept of the central dogma in molecular biology, namely from genome to transcriptome to proteome. Projects are going on to analyze gene expression profiles both at the mRNA and protein levels and to catalog protein 3D structure families, which will no doubt help the understanding of information in the genome. However complete, such catalogs of genes, RNAs, and proteins only tell us about the building blocks of life. They do not tell us much about the wiring (interaction) of building blocks, which is essential for uncovering systemic functional behaviors of the cell or the organism. Thus, an alternative view of post-genomics is to go up from the molecular level to the cellular level, and to understand, what I call, the "interactome"or a complete picture of molecular interactions in the cell. KEGG (http://www.genome.ad.jp/kegg/) is our attempt to computerize current knowledge on various cellular processes as a collection of "generalized"protein-protein interaction networks, to develop new graph-based algorithms for predicting such networks from the genome information, and to actually reconstruct the interactomes for all the completely sequenced genomes and some partial genomes. During the reconstruction process, it becomes readily apparent that certain pathways and molecular complexes are present or absent in each organism, indicating modular structures of the interactome. In addition, the reconstruction uncovers missing components in an otherwise complete pathway or complex, which may result from misannotation of the genome or misrepresentation of the KEGG pathway. When combined with additional experimental data on protein-protein interactions, such as by yeast two-hybrid systems, the reconstruction possibly uncovers unknown partners for a particular pathway or complex. Thus, the reconstruction is tightly coupled with the annotation of individual genes, which is maintained in the GENES database in KEGG. We are also trying to expand our literature surrey to include in the GENES database most up-to-date information about gene functions.

  • PDF

The Existence of a Putative Regulatory Element in 3'-Untranslated Region of Proto-oncogene HOX11's mRNA

  • Li, Yue;Jiang, Zhao-Zhao;Chen, Hai-Xu;Leung, Wai-Keung;Sung, Joseph J.Y.;Ma, Wei-Jun
    • BMB Reports
    • /
    • 제38권4호
    • /
    • pp.500-506
    • /
    • 2005
  • HOX11 encodes a homeodomain-containing transcription factor which directs the development of the spleen during embryogenesis. While HOX11 expression is normally silenced through an unknown mechanism in all tissues by adulthood, the deregulation of HOX11 expression is associated with leukemia, such as T-cell acute lymphoblastic leukemia. The elucidation of regulatory elements contributing to the molecular mechanism underlying the regulation of HOX11 gene expression is of great importance. Previous reports of HOX11 regulatory elements mainly focused on the 5'-flanking region of HOX11 on the chromosome related to transcriptional control. To expand the search of putative cis-elements involved in HOX11 regulation at the post-transcriptional level, we analyzed HOX11 mRNA 3'-untranslated region (3'UTR) and found an AU-rich region. To characterize this AU-rich region, in vitro analysis of HOX11 mRNA 3'UTR was performed with human RNA-binding protein HuR, which interacts with AU-rich element (ARE) existing in the 3'UTR of many growth factors' and cytokines' mRNAs. Our results showed that the HOX11 mRNA 3'UTR can specifically bind with human HuR protein in vitro. This specific binding could be competed effectively by typical ARE containing RNA. After the deletion of the AU-rich region present in the HOX11 mRNA 3'UTR, the interaction of HOX11 mRNA 3'UTR with HuR protein was abolished. These findings suggest that HOX11 mRNA 3'UTR contains cis-acting element which shares similarity in the action pattern with RE-HuR interactions and may involve in the post-transcriptional regulation of the HOX11 gene.

Ginsenoside Rh2 reduces m6A RNA methylation in cancer via the KIF26B-SRF positive feedback loop

  • Hu, Chunmei;Yang, Linhan;Wang, Yi;Zhou, Shijie;Luo, Jing;Gu, Yi
    • Journal of Ginseng Research
    • /
    • 제45권6호
    • /
    • pp.734-743
    • /
    • 2021
  • Background: The underlying mechanisms of the potential tumor-suppressive effects of ginsenoside Rh2 are complex. N6-methyladenosine (m6A) RNA methylation is usually dysregulated in cancer. This study explored the regulatory effect of ginsenoside Rh2 on m6A RNA methylation in cancer. Methods: m6A RNA quantification and gene-specific m6A RIP-qPCR assays were applied to assess total and gene-specific m6A RNA levels. Co-immunoprecipitation, fractionation western blotting, and immunofluorescence staining were performed to detect protein interactions and distribution. QRT-PCR, dual-luciferase, and ChIP-qPCR assays were conducted to check the transcriptional regulation. Results: Ginsenoside Rh2 reduces m6A RNA methylation and KIF26B expression in a dose-dependent manner in some cancers. KIF26B interacts with ZC3H13 and CBLL1 in the cytoplasm of cancer cells and enhances their nuclear distribution. KIF26B inhibition reduces m6A RNA methylation level in cancer cells. SRF bound to the KIF26B promoter and activated its transcription. SRF mRNA m6A abundance significantly decreased upon KIF26B silencing. SRF knockdown suppressed cancer cell proliferation and growth both in vitro and in vivo, the effect of which was partly rescued by KIF26B overexpression. Conclusion: ginsenoside Rh2 reduces m6A RNA methylation via downregulating KIF26B expression in some cancer cells. KIF26B elevates m6A RNA methylation via enhancing ZC3H13/CBLL1 nuclear localization. KIF26B-SRF forms a positive feedback loop facilitating tumor growth.

Plant defense signaling network study by reverse genetics and protein-protein interaction

  • Paek, Kyung-Hee
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.29-29
    • /
    • 2003
  • Incompatible plant-pathogen interactions result in the rapid cell death response known as hypersensitive response (HR) and activation of host defense-related genes. To understand the molecular and cellular mechanism controlling defense response better, several approaches including isolation and characterization of novel genes, promoter analysis of those genes, protein-protein interaction analysis and reverse genetic approach etc. By using the yeast two-hybrid system a clone named Tsipl, Tsil -interacting protein 1, was isolated whose translation product apparently interacted with Tsil, an EREBP/AP2 type DNA binding protein. RNA gel blot analysis showed that the expression of Tsipl was increased by treatment with NaCl, ethylene, salicylic acid, or gibberellic acid. Transient expression analysis using a Tsipl::smGFP fusion gene in Arabidopsis protoplasts indicated that the Tsipl protein was targeted to the outer surface of chloroplasts. The targeted Tsipl::smGFP proteins were diffused to the cytoplasm of protoplasts in the presence of salicylic acid (SA) The PEG-mediated co-transfection analysis showed that Tsipl could interact with Tsil in the nucleus. These results suggest that Tsipl-Tsil interaction might serve to regulate defense-related gene expression. Basically the useful promoters are valuable tools for effective control of gene expression related to various developmental and environmental condition.(중략)

  • PDF