Browse > Article

Functional Analysis and Selection of Second-site Revertant of Escherichia coli 16S rRNA of C770G  

Ha, Hye-Jeong (Department of Life Science, Chung-Ang University)
Ryou, Sang-Mi (Department of Life Science, Chung-Ang University)
Lee, Kang-Seok (Department of Life Science, Chung-Ang University)
Jeon, Che-Ok (Department of Life Science, Chung-Ang University)
Publication Information
Microbiology and Biotechnology Letters / v.39, no.1, 2011 , pp. 93-96 More about this Journal
Abstract
It has been shown that a nucleotide substitution at position 770 in Escherichia coli 16S rRNA, which is implicated in forming the evolutionary conserved B2c intersubunit bridge, has a detrimental effect on ribosome function. In order to isolate second-site revertants that complement ribosomes containing C770G, we performed a random mutagenesis of the 16S rRNA gene and selected clones that could produce more CAT protein translated by specialized ribosome. One of the clones contained two nucleotide substitutions at positions 569 and 904 (C569G and U904C) and these mutations partially complemented the loss of protein-synthesis ability caused by C770G. Further studies using the isolated revertant will provide information about which part of 16S rRNA is interacting with C770 and the consequence of the structure formed by these interactions in the process of protein synthesis.
Keywords
B2c; error-prone PCR; rRNA; ribosome;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Yeom, J.-H. and K. Lee. 2006. RraA rescues Escherichia coli cells over-producing RNase E from growth arrest by modulating the ribonucleolytic activity. Biochem. Biophys. Res. Commun. 345: 1372-1376.   DOI   ScienceOn
2 Gabashvili, I. S., R. K. Agrawal, C. M. Spahn, R. A. Grassucci, D. I. Svergun, J. Frank, and P. Penczek. 2000. Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 100: 537-549.   DOI   ScienceOn
3 Gao, H., J. Sengupta, and M. Valle et al. 2003. Study of the structural dynamics of the E. coli 70S ribosome using realspace refinement. Cell 113: 789-801.   DOI   ScienceOn
4 Hennelly, S. P., A. Antoun, M. Ehrenberg, C. O. Gualerzi, W. Knight, J. S. Lodmell, and W. E. Hill. 2005. A timeresolved investigation of ribosomal subunit association. J. Mol. Biol. 346: 1243-1258.   DOI   ScienceOn
5 Herr, W. and H. F. Noller. 1979. Protection of specific sites in 23S and 5S RNA from chemical modification by association of 30S and 50S ribosomes. J. Mol. Biol. 130: 421-432.   DOI
6 Kim, H.-M., J.-H. Yeom, H.-J. Ha, J.-M. Kim, and K. Lee. 2007. Functional analysis of the residues C770 and G771 of E. coli 16S rRNA implicated in forming the intersubunit bridge B2c of the ribosome. J. Microbiol. Biotechnol. 17(7): 1204-1207.
7 김종명, 고하영, 송우석, 류상미, 이강석. 2006. Escherichia coli 16S rRNA의 789 염기의 기능분석 및 이차복귀돌연 변이체 발췌를 위한 방법 개발. 미생물학회지. 42: 156-159.
8 Spahn, C. M., E. Jan, A. Mulder, R. A. Grassucci, P. Sarnow, and J. Frank. 2004. Cryo-EM visualization of a viral internal ribosome entry site bound to human ribosomes: The IRES functions as an RNA-based translation factor. Cell 118: 465-475.   DOI   ScienceOn
9 Schuwirth, B. S., M. A. Borovinskaya, C. W. Hau, W. Zhang, A. Vila-Sanjurjo, J. M. Holton, and J. H. Cate. 2005. Structures of the bacterial ribosome at 3.5 A resolution. Science 310: 827-834.   DOI   ScienceOn
10 Selmer, M., C. M. Dunham, F. V. Murphy 4th, A. Weixlbaumer, S. Petry, A. C. Kelley, J. R. Weir, and V. Ramakrishnan. 2006. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935-1942.   DOI   ScienceOn
11 Wilson, D. N., F. Schluenzen, J. M. Harms, T. Yoshida, T. Ohkubo, R. Albrecht, J. Buerger, Y. Kobayashi, and P. Fucini. 2005. X-ray crystallography study on ribosome recycling: The mechanism of binding and action of RRF on the 50S ribosomal subunit. EMBO J. 24: 251-260.   DOI   ScienceOn
12 Merryman, C., D. Moazed, G. Daubresse, and H. F. Noller. 1999. Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits. J. Mol. Biol. 285: 107-113.   DOI   ScienceOn
13 Ban, N., P. Nissen, J. Hansen, P. B. Moore, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289: 905-920.   DOI   ScienceOn
14 Brosius, J., T. Dull, D. Sleeter, and H. F. Noller. 1981. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J. Mol. Biol. 148: 107-127.   DOI
15 Calos, M. P. 1978. DNA sequence for a low-level promoter of the lac repressor gene and an "up" promoter mutation. Nature 274: 762-765.   DOI   ScienceOn
16 Lee, K., C. A. Holland-Staley, and P. R. Cunningham. 2001. Genetic approaches to studying protein system: effects of mutations at W516 and A 535 in Escherichia coli 16S rRNA. J. Nutr. 131: 2994S-3004S.   DOI
17 Lee, K., S. Varma, J. Santalucia Jr., and P. R. Cunningham. 1997. In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA. J. Mol. Biol. 269: 732-743.   DOI   ScienceOn
18 Schluenzen, F., A. Tocilj, and R. Zarivach et al. 2000. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102: 615-623.   DOI   ScienceOn
19 Chapman, N. M. and H. F. Noller. 1977. Protection of specific sites in 16S RNA from chemical modification by association of 30S and 50S ribosomes. J. Mol. Biol. 109: 131-149.   DOI