RNase MRP is a ribonucleoprotein complex with a site-specific endonuclease activity. Its original substrate for cleavage is the small mitochondrial RNA near the mitochondrial DNA replication origin, thus it was proposed to generate the primer for mtDNA replication. Recently, it has been shown to have another substrate in the nucleus, such as pre-S.8S ribosomal RNA in nucleolus. The gene for the RNA component of RNase MRP (MRP RNA) was found to be encoded by the nucleus genome, suggesting an interesting intracellular trafficking of MRP RNA to both mitochondria and nucleolus after transcription in nucleus. In this study, genomic DNA encoding MRP RNA was microinjected into the nucleus of Xenopus oocytes, to analyze promoter regions involved in the transcription. It showed that the proximal sequence element and TATA box are important for basal level transcription; octamer motif and Sp1 binding sites are for elevated level transcription. Most of Xenopus MRP RNA was exported out to the cytoplasm following transcription in the nucleus. Utilizing various hybrid constructs, export of MRP RNA was found to be regulated by the promoter and the 5' half of the coding region of the gene. Interestingly, the transcription in nucleus seems to be coupled to the export of MRP RNA to cytoplasm. Intracellular transport of injected MRP RNA can be easily visualized by whole-mount in situ hybridization following microinjection; it also shows possible intra-nuclear sites for transcription and export of MRP RNA.
Escherichia coli protein Rho is required for the factor-dependent transcription termination by an RNA polymerase and is essential for the viability of the cell. It is a homohexameric protein that recognizes and binds preferably to C-rich sites in the transcribed RNA. Once bound to RNA, it utilizes RNA-dependent ATPase activity and subsequently ATPase-dependent helicase activity to unwind RNA-DNA hybrids and release RNA from a transcribing elongation complex. Studies over the past few decades have highlighted Rho as a molecule and have revealed much of its mechanistic properties. The recently solved crystal structure could explain many of its physiological functions in terms of its structure. Despite all these efforts, many of the fundamental questions pertaining to Rho recognition sites, differential ATPase activity in response to different RNAs, translocation of Rho along the nascent transcript, interactions with elongation complex and finally unwinding and release of RNA remain obscure. In the present review we have attempted to summarize 'the knowns' and 'the unknowns' of the Rho protein revealed by the recent developments in this field. An attempt has also been made to understand the physiology of Rho in the light of its phylogeny.
The Streptomyces coelicolor A3(2) genome contains six operons (rrnA to F) for ribosomal RNA synthesis. Transcription from rrnD occurs from four promoters (p1 to p4). We found that transcripts from the p1 and p3 promoters were most abundant in vivo in the early exponential phase. However, at later phases of exponential and stationary growth, transcripts from the p1 promoter decreased drastically, with the p3 and p4 transcripts constituting the major forms. Partially purified RNA polymerase supported transcription from the p3 and p4 promoters, whereas pure reconstituted RNA polymerase with core enzyme (E) and the major vegetative sigma factor ${\sigma}^{HrdB}$ ($E{\cdot}{\sigma}^{HrdB}$) did not. In order to assess any potential requirement for additional factor(s) that allow transcription from the p3 and p4 promoters, we fractionated a partially purified RNA polymerase preparation by denaturing gel filtration chromatography. We found that transcription from the p3 and p4 promoters required factor(s) of about 30-35 kDa in addition to RNAP holoenzyme ($E{\cdot}{\sigma}^{HrdB}$). Therefore, transcription from the p3 and p4 promoters, which contain a consensus -10 region but no -35 for ${\sigma}^{HrdB}$ recognition, are likely to be regulated by transcription factor(s) that modulate RNA polymerase holoenzyme activity in S. coelicolor.
Efficient in vitro RNA synthesis can be easily accomplished from cloned DNA using bactrio-phage SP6, T7 or T3 RNA polymerase. Despite its popularity as in vitro transcription system, molecular mechanisms of bacteriophage transcription has not been studied, although physical and catalytic properties of several phage RNA polymerases have well been documented (1). Only recently the T7 promoter has been physically mapped by footprinting of the T7 RNA polymerase (2,3). These simple phage systems, however, could be useful for detailed molecular studies of transcription.
박테리오 파아지 T7 RNA 중합효소는 다른 RNA 중합효소와 비교하여 볼 때 보조인자 없이 전사를 진행하는 하나의 subunit로 구성된 RNA 중합효소이다. 전사 진행 단계 중에서 T7 RNA 중합효소의 전사연장을 연구하기 위해 biotin이 결합된 DNA 주형을 streptavidin bead로 고정시킴으로서 T7 RNA 중합효소의 진행과정을 관찰할 수 있었고, 이러한 기작을 이용하여 일련의 활성을 가지는 가장 안정한 전사연장복합체들을 얻을 수 있었다. 전사 연장체들은 16번 염기 위치로부터 18번 염기의 위치까지 방사선 동위원소가 표지되어 있으며 이들 표지된 전사연장복합체들은 단계별로 합성하여 22-40개 핵산잔기들이 합성된 전사연장복합체들을 얻을 수 있었다. 이와 같은 전사연장복합체들을 PTH 전사종결 부위가 있는 주형으로 사용하여 야생형 및 R173C 돌연변이 RNA 중합효소를 이용하여 전사연장복합체를 제조하여 비교한 결과 PTH 전사종결에 둔감한 R173C 돌연변이 중합효소의 경우 야생형에 비해 PTH 전사종결부위를 지난 위치에서도 전사연장복합체가 생성되었다.
Enzymes involved in catecholamine synthesis are present in the highest concentration in the adrenal medulla, however they were found also in other, mainly nervous tissues. Increased transcription of genes for catecholamine biosynthetic enzymes is an important mechanism to increase the capacity for epineprine/norepinephrine biosynthesis with stress. Gastrodia elata(Chinese name: Tienma), are very important Chinese herbal medicines used for the medical treatment of headaches, migraine, dizziness, epilepsy, rheumatism, neuralgia, paralysis and other neuralgic and nervous disorders. Immobilize stressed rat markedly increased tyrosine hydroxylase (TH) mRNA and dopamine-$\beta$-hydroxylase (DBH) mRNA transcription level more than control group. But treated Gastrodia elata extracts in immobilized stressed rat slightly increased TH mRNA and DBH mRNA transcription level more than normal group. In addition, we are obtained identical results in PC12 cell line. Decrease of transcription level of TH mRNA and DBH mRNA is indicating that Gastrodia elata have a anti-stress effects which decrease the transcription level of TH and DBH mRNA on catecholamine biosynthesis pathway.
Recently, data from several groups have raised the concept of 'checkpoint' in transcription. As capping of nascent RNA transcript is tightly coupled to RNA polymerase II transcription, we seek to obtain direct evidence that transcripiton checkpoint via capping enzyme functions in this early regulatory step. One of temperature sensitive (ts) alleles of ceg1, a guanylyltransferase subunit of the Saccharomyces cerevisiaecapping enzyme, showed 6-azauracil (6AU) sensitivity at the permissive growth temperature, which is a phenotype that is correlated with a transcription elongational defect. This ts allele, ceg1-63 also has an impaired ability to induce PUR5 in response to a 6AU treatment. However, this cellular and molecular defect is not due to the preferential degradation of the transcript attributed from a lack of guanylyltransferase activity. On the contrary, the data suggests that the guanylyltransferase subunit of the capping enzyme plays a role in transcription elongation. First, in addition to the 6AU sensitivity, ceg1-63is synthetically lethal with elongation defective mutations of the largest subunit of RNA polymerase II. Secondly, it exhibited a lower GAL1 mRNA turn-over after glucoseshut off. Third, it decreased the transcription read through a tandem array of promoter proximal pause sites in an orientation dependent manner. Interestingly, this mutant also showed lower pass through a pause site located further downstream of the promoter. Taken together, these results suggest that the capping enzyme plays the role of an early transcription checkpoint possibly in the step of the reversion of repression by stimulating polymerase to escape from the promoter proximal arrest once RNA becomes appropriately capped.
The RNA transcripts produced from in vitro transcription reaction of BTV core were analyzed on agarose-urea gel. Fast migrating abortive RNAs, in addition to full length species of RNA, were observed. Fast migrating RNAs extracted from agarose-urea gel were hybridized to all 10 segments of genomic ds RNA, while solw migrating RNAs extracted from agarose-urea gel were hybridized only to the large and medium size genomic ds RNA. These results indicate that fast migrating RNA transcripts are most likely the products of abortive transcription.
The regulation of actin gene expression during the differentiation of Naegleria gruberi was examined. Actin mRNA concentration was maximal in amoebae and decreased rapidly after the initiation of differentiation. At 20 min after initiation, the concentration of actin mRNA decreased to 55% of the maximal value. The actin mRNA concentration decreased to the minimum at 80 min (15% of the maximum), and then began to increase slightly at the end of differentiation. This decrease of actin mRNA concentration was regulated by the repression of actin gene transcription based on nuclear run-on transcription experiments. The rates of transcription of actin gene in nuclei prepared at 40 and 80 min after the initiation of differentiation were 50 and 28% of that of nuclei prepared at the beginning of differentiation, respectively. The addition of cycloheximide at the initiation of differentiation inhibited both the rapid decrease in the concentration of actin mRNA and the repression of actin gene transcription. These results suggest that the rapid decrease in the concentration of actin mRNA during the differentiation of N. gruberi is accomplished by the repression of actin gene transcription and this transcriptional regulation requires continuous protein synthesis during the differentiation.
Cell-free extracts prepared from cultured insect cells, Spodoptera. frugiperda, were analyzed for activation of early gene transcription of an insect baculovirus, Autographa californica nuclear polyhedrosis virus (AcNPV). The template DNA used for in vitro transcription assays contained promoter sites for the baculovirus genes that have been classified as immediate early ($\alpha$) or early genes. These genes are located in the HindIII-K/Q region of the AcNPV genome. Nuclei isolated from the AcNPV-infected Spodoptera frugiperda cells were also used for in vitro transcription analysis by RNase-mapping the labeled RNA synthesized from in vitro run-on reaction in the isolated nuclei. The genes studied by this technique were p26 and pl0 genes which were classified as delayed early and late gene, respectively. We found that transcription of the genes from the HindIII-K region was accurately initiated and unique in the whole cell extract obtained from uninfected cells, although abundance of the in vitro transcripts was reverse to that of in vivo RNA. With isolated nuclei transcription of the p26 gene was inhibited by $\alpha$-amanitin suggesting that the p26 gene was transcribed by host RNA polymerase II. However, transcription of the pl0 gene in isolated nuclei was not inhibited by $\alpha$-amanitin, but rather stimulated by the inhibitor. We also found that the synthesis of $\alpha$-amanitin-resistant RNA polymerase was begun before 6 hr p.i., the time point at which the onset of viral DNA replication as well as the appearance of a-amanitin-resistant viral transcripts were detected. These studies give us strong evidence to support the previous data that early genes of AcNPV were transcribed by host RNA polymerease III, while transcription of late genes was mediated at least by a novel $\alpha$-amanitin-resistant RNA polymerase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.