• Title/Summary/Keyword: RNA splicing

Search Result 159, Processing Time 0.019 seconds

Functional Modification of a Specific RNA with Targeted Trans-Splicing

  • Park, Young-Hee;Kim, Sung-Chun;Kwon, Byung-Su;Jung, Heung-Su;Kim, Kuchan;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.2 no.1
    • /
    • pp.45-52
    • /
    • 2004
  • The self-splicing group I intron from Tetrahymena thermophila has been demonstrated to perform splicing reaction with its substrate RNA in the trans configuration. In this study, we explored the potential use of the trans-splicing group I ribozymes to replace a specific RNA with a new RNA that exerts any new function we want to introduce. We have chosen thymidine phosphorylase (TP) RNA as a target RNA that is known as a valid cancer prognostic factor. Cancer-specific expression of TP RNA was first evaluated with RT-PCR analysis of RNA from patients with gastric cancer. We determined next which regions of the TP RNA are accessible to ribozymes by employing an RNA mapping strategy, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. A specific ribozyme recognizing the most accessible sequence in the TP RNA with firefly luciferase transcript as a 3' exon was then developed. The specific trans-splicing ribozyme transferred an intended 3' exon tag sequence onto the targeted TP transcripts, resulting in a more than two fold induction of the reporter activity in the presence of TP RNA in mammalian cells, compared to the absence of the target RNA. These results suggest that the Tetrahymena ribozyme can be a potent anti-cancer agent to modify TP RNAs in tumors with a new RNA harboring anti-cancer activity.

Yeast Small Ubiquitin-Like Modifier (SUMO) Protease Ulp2 is Involved in RNA Splicing

  • Jeong-Min Park;Seungji Choi;Dong Kyu Choi;Hyun-Shik Lee;Dong-Hyung Cho;Jungmin Choi;Hong-Yeoul Ryu
    • Development and Reproduction
    • /
    • v.28 no.2
    • /
    • pp.47-54
    • /
    • 2024
  • In eukaryotes, RNA splicing, an essential biological process, is crucial for precise gene expression. Inaccurate RNA splicing can cause aberrant mRNA production, disrupting protein synthesis. To regulate splicing efficiency, some splicing factors are reported to undergo Ubiquitin-like Modifier (SUMO)ylation. Our data indicate that in Saccharomyces cerevisiae, the SUMO protease, Ulp2, is involved in splicing. In the ulp2Δ mutant, some ribosomal protein (RP) transcripts exhibited a significant increase in the levels of intron-containing pre-mRNA because of improper splicing. Moreover, we confirmed Ulp2 protein binding to the intronic regions of RP genes. These findings highlight a critical Ulp2 role in RP transcript splicing.

SR Proteins: Binders, Regulators, and Connectors of RNA

  • Jeong, Sunjoo
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Serine and arginine-rich (SR) proteins are RNA-binding proteins (RBPs) known as constitutive and alternative splicing regulators. As splicing is linked to transcriptional and post-transcriptional steps, SR proteins are implicated in the regulation of multiple aspects of the gene expression program. Recent global analyses of SR-RNA interaction maps have advanced our understanding of SR-regulated gene expression. Diverse SR proteins play partially overlapping but distinct roles in transcription-coupled splicing and mRNA processing in the nucleus. In addition, shuttling SR proteins act as adaptors for mRNA export and as regulators for translation in the cytoplasm. This mini-review will summarize the roles of SR proteins as RNA binders, regulators, and connectors from transcription in the nucleus to translation in the cytoplasm.

Comparative Analysis of Intracellular Trans-Splicing Ribozyme Activity Against Hepatitis C Virus Internal Ribosome Entry Site

  • Ryu Kyung-Ju;Lee Seong-Wook
    • Journal of Microbiology
    • /
    • v.42 no.4
    • /
    • pp.361-364
    • /
    • 2004
  • Internal ribosome entry site (IRES) of the hepatitis C virus (HCV) is known to be essential for HCV replication and most conserved among HCV variants. Hence, IRES RNA is a good therapeutic target for RNA-based inhibitors, such as ribozymes. We previously proposed a new anti-HCV modulation strategy based on trans-splicing ribozymes, which can selectively replace HCV transcripts with a new RNA that exerts anti-HCV activity. To explore this procedure, sites which are accessible to ribozymes in HCV IRES were previously determined by employing an RNA mapping method in vitro. In this study, we evaluate the intracellular accessibility of the ribozymes by comparing the trans-splicing activ­ities in cells of several ribozymes targeting different sites of the HCV IRES RNA. We assessed the intra­cellular activities of the ribozymes by monitoring their target-specific induction degree of both reporter gene activity and cytotoxin expression. The ribozyme capable of targeting the most accessible site iden­tified by the mapping studies then harbored the most active trans-splicing activity in cells. These results suggest that the target sites predicted to be accessible are truly the most accessible in the cells, and thus, could be applied to the development of various RNA-based anti-HCV therapies.

Chimeric RNAs as potential biomarkers for tumor diagnosis

  • Zhou, Jianhua;Liao, Joshua;Zheng, Xuexiu;Shen, Haihong
    • BMB Reports
    • /
    • v.45 no.3
    • /
    • pp.133-140
    • /
    • 2012
  • Cancers claim millions of lives each year. Early detection that can enable a higher chance of cure is of paramount importance to cancer patients. However, diagnostic tools for many forms of tumors have been lacking. Over the last few years, studies of chimeric RNAs as biomarkers have emerged. Numerous reports using bioinformatics and screening methodologies have described more than 30,000 expressed sequence tags (EST) or cDNA sequences as putative chimeric RNAs. While cancer cells have been well known to contain fusion genes derived from chromosomal translocations, rearrangements or deletions, recent studies suggest that trans-splicing in cells may be another source of chimeric RNA production. Unlike cis-splicing, trans-splicing takes place between two pre-mRNA molecules, which are in most cases derived from two different genes, generating a chimeric non-co-linear RNA. It is possible that trans-splicing occurs in normal cells at high frequencies but the resulting chimeric RNAs exist only at low levels. However the levels of certain RNA chimeras may be elevated in cancers, leading to the formation of fusion genes. In light of the fact that chimeric RNAs have been shown to be overrepresented in various tumors, studies of the mechanisms that produce chimeric RNAs and identification of signature RNA chimeras as biomarkers present an opportunity for the development of diagnoses for early tumor detection.

Induction of ER-stress by Heat Shock in the Thyrocytes

  • Kwon, Ki-Sang;Kwon, O-Yu;Yang, Young-Mo
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.435-438
    • /
    • 2006
  • In eukaryotes, ER stress induces UPR (unfolded protein response) via IRE1 activation which sends a molecular signal for XBP1 mRNA splicing in the cytosol. During this mRNA splicing, 23 nt removed in which contains PstI site and then resulting XBP1 product is not digested with PstI restriction enzyme. In this study, using this XBP1 mRNA splicing mechanism, the effect of heat shock on thyrocytes is studied, because heat shock response in the thyrocytes needs more study to understand thyroid physiology under alternative environments. ER inducible drugs (tunicamycin, DTT, $Ca^{2+}$ ionopore A23187, BFA) induce ER stress in the thyrocytes. From 3 hours after heat shock, ER stress is induced and which is reversible when heat shock is without. While $Ca^{2+}$ ionopore A23187 is reversible from ER stress by washing out the drug, thapsigagin is irreversible. Other ER inducible drugs are not so sensitive to ER stress repairing. XBP1 mRNA splicing in a cell is very available method to detect ER stress. It needs only a small quantity of total RNA and processing also very easy.

  • PDF

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Identification of neoantigens derived from alternative splicing and RNA modification

  • Park, Jiyeon;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.23.1-23.6
    • /
    • 2019
  • The acquisition of somatic mutations is the most common event in cancer. Neoantigens expressed from genes with mutations acquired during carcinogenesis can be tumor-specific. Since the immune system recognizes tumor-specific peptides, they are potential targets for personalized neoantigen-based immunotherapy. However, the discovery of druggable neoantigens remains challenging, suggesting that a deeper understanding of the mechanism of neoantigen generation and better strategies to identify them will be required to realize the promise of neoantigen-based immunotherapy. Alternative splicing and RNA editing events are emerging mechanisms leading to neoantigen production. In this review, we outline recent work involving the large-scale screening of neoantigens produced by alternative splicing and RNA editing. We also describe strategies to predict and validate neoantigens from RNA sequencing data.

The Structure and The Reason for Nuclear Accumulation of Poly A(-) Spliced SV40 RNA (Poly A tail이 없는 SV 40 spliced RNA의 구조 및 핵내 축적의 원인)

  • 박주상;노정혜
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.1-9
    • /
    • 1989
  • The locations of 5' ends as well as the splicing pattern of viral poly A(-) 19S RNA from monkey cells infected with SV40 were determined by a modification of primer extension method. The 5' end of this RNA mapped at the major cap site at nucleotide residue 325, used most frequently by SV40 late RNAs. The intron from nt.373 to nt.558 was removed as the ordinary cytoplasmic poly A(+) 19S RNA. The 3'end of this RNA was very heterogeneous and distributed over 1 kb upstream of polyadenylation site, as determined by S1 nuclease mapping. The reason for this normally initiated and spliced RNA to accumulate in the nucleus was investigated. In order to test whether the presence of unused 3' splice region on this RNA caused such subcellular distribution, cells were transfected with SV40 mutant KNA containing deletion around 3' splice site. The RNA deleted of 3' splice region accumulated mainly in the cytoplasm. This accumulation did not result from the increased stability of the RNA due to the deletion, since the wild type and mutant RNAs exhibited similar half lives after chase with actinomycin D. Therefore it is likely that the 19S spliced RNA is hindered from being transported into the cytoplasm due to some pre-splicing complexes formed at the unused 3' splice site.

  • PDF

Ribozyme-Mediated Replacement of p53 RNA by Targeted Trans-Splicing

  • Shin, Kyung-Sook;Bae, Soo-Jin;Hwang, Eun-Seong;Jeong, Sun-Joo;Lee, Seong-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.844-848
    • /
    • 2002
  • In more than half of human tumors, the p53 tumor suppressor gene is mutated. Thus, restoration of wild-type p53 activity by repair of mutant RNA could be a potentially promissing approach to cancer treatment. To explore the potential use of RNA repair for cancer therapy, trans-splicing group I ribozymes were developed that could replace mutant p53 RNA with RNA sequence attached to the 3'end of ribozymes. By employing a mapping library of ribozymes, we first determined which regions of the p53 RNA are accessible to ribozymes, and found that the leader sequences upstream of the AUG start codon appeared to be particularly accessible. Next, trans-splicing ribozymes were generated that specifically recognized the sequences around these accessible regions. Subsequently, the ribozymes reacted with and altered the p53 transcripts by transferring a 3'exon tag sequence onto the targeted p53 RNA with high fidelity. Thus, these ribozymes could be utilized to repair mutant p53 in tumors, which would revert the neoplastic phenotype.