• Title/Summary/Keyword: RNA expression platform

Search Result 30, Processing Time 0.043 seconds

Differential Effects of Acute and Chronic Exercise on Autophagy-related Gene Expression in Drosophila melanogaster (일회성 및 만성적 유산소운동이 초파리의 자가포식 관련 유전자 발현에 미치는 영향)

  • Kim, Hee Yeon;Kim, Hye Jin;Hwang, Ji Sun;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.24 no.11
    • /
    • pp.1180-1186
    • /
    • 2014
  • Autophagy, the lysosomal degradation pathway, is an intracellular recycling system that is necessary for the metabolic benefits of exercise and for producing lasting beneficial effects of exercise in various diseases. However, the most recent studies have only examined the effect of a single bout of exercise or resistance exercise on autophagic responses. To determine the differential effects of acute and chronic exercise on the expression of autophagy-related genes in D. melanogaster, white-eyed mutant D. melanogaster were assigned randomly to four groups: control, acute exercise, 2 hr chronic exercise, and 3 hr chronic exercise. The flies were exercised using a mechanized platform known as the Power Tower. Our results revealed that a single bout of exercise resulted in increased mRNA levels of the Atg8a gene (~20%, p<0.05). However, Atg1 and Atg6 mRNA expression were not induced by acute exercise. Transcript levels of Atg6 (~29%, p<0.05) related to the nucleation of autophagosomes were significantly induced by 2 hr of chronic exercise. However, this chronic exercise was not enough to increase Atg1 and Atg8a mRNA expression. On the other hand, 3 hr of exercise for 7 days significantly increased Atg1, Atg6, and Atg8a gene expression-about 57%, 37%, and 71%, respectively (p<0.05). These results suggest that a single bout of exercise is not enough to induce full activation of selected autophagy-related genes in D. melanogaster. Our results demonstrated that chronic regular exercise induced autophagy-related gene expression, suggesting that chronic regular exercise training might be required to activate autophagic responses important for producing beneficial effects of exercise in various diseases.

Hepatic microRNAome reveals potential microRNA-mRNA pairs association with lipid metabolism in pigs

  • Liu, Jingge;Ning, Caibo;Li, Bojiang;Li, Rongyang;Wu, Wangjun;Liu, Honglin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.9
    • /
    • pp.1458-1468
    • /
    • 2019
  • Objective: As one of the most important metabolic organs, the liver plays vital roles in modulating the lipid metabolism. This study was to compare miRNA expression profiles of the Large White liver between two different developmental periods and to identify candidate miRNAs for lipid metabolism. Methods: Eight liver samples were collected from White Large of 70-day fetus (P70) and of 70-day piglets (D70) (with 4 biological repeats at each development period) to construct sRNA libraries. Then the eight prepared sRNA libraries were sequenced using Illumina next-generation sequencing technology on HiSeq 2500 platform. Results: As a result, we obtained 346 known and 187 novel miRNAs. Compared with the D70, 55 down- and 61 up-regulated miRNAs were shown to be significantly differentially expressed (DE). Gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis indicated that these DE miRNAs were mainly involved in growth, development and diverse metabolic processes. They were predicted to regulate lipid metabolism through adipocytokine signaling pathway, mitogen-activated protein kinase, AMP-activated protein kinase, cyclic adenosine monophosphate, phosphatidylinositol 3 kinase/protein kinase B, and Notch signaling pathway. The four most abundantly expressed miRNAs were miR-122, miR-26a and miR-30a-5p (miR-122 only in P70), which play important roles in lipid metabolism. Integration analysis (details of mRNAs sequencing data were shown in another unpublished paper) revealed that many target genes of the DE miRNAs (miR-181b, miR-145-5p, miR-199a-5p, and miR-98) might be critical regulators in lipid metabolic process, including acyl-CoA synthetase long chain family member 4, ATP-binding casette A4, and stearyl-CoA desaturase. Thus, these miRNAs were the promising candidates for lipid metabolism. Conclusion: Our study provides the main differences in the Large White at miRNA level between two different developmental stages. It supplies a valuable database for the further function and mechanism elucidation of miRNAs in porcine liver development and lipid metabolism.

Ginsenoside Rg3 and Korean Red Ginseng extract epigenetically regulate the tumor-related long noncoding RNAs RFX3-AS1 and STXBP5-AS1

  • Ham, Juyeon;Jeong, Dawoon;Park, Sungbin;Kim, Hyeon Woo;Kim, Heejoo;Kim, Sun Jung
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.625-634
    • /
    • 2019
  • Background: Ginsenoside Rg3, a derivative of steroidal saponins abundant in ginseng, has a range of effects on cancer cells, including anti-cell proliferation and anti-inflammation activity. Here, we investigate two long noncoding RNAs (lncRNAs), STXBP5-AS1 and RFX3-AS1, which are hypomethylated and hypermethylated in the promoter region by Rg3 in MCF-7 cancer cells. Methods: The lncRNAs epigenetically regulated by Rg3 were mined using methylation array analysis. The effect of the lncRNAs on the apoptosis and proliferation of MCF-7 cells was monitored in the presence of Rg3 or Korean Red Ginseng (KRG) extract after deregulating the lncRNAs. The expression of the lncRNAs and their target genes was examined using qPCR and Western blot analysis. The association between the expression of the target genes and the survival rate of breast cancer patients was analyzed using the Kaplan-Meier Plotter platform. Results: STXBP5-AS1 and RFX3-AS1 exhibited anti- and pro-proliferation effects, respectively, in the cancer cells, and the effects of Rg3 and KRG extract on apoptosis and cell proliferation were weakened after deregulating the lncRNAs. Of the genes located close to STXBP5-AS1 and RFX3-AS1 on the chromosome, STXBP5, GRM1, RFX3, and SLC1A1 were regulated by the lncRNAs on the RNA and protein level. Breast cancer patients that exhibited a higher expression of the target genes of the lncRNAs had a higher metastasis-free survival rate. Conclusion: The current study is the first to identify lncRNAs that are regulated by the presence of Rg3 and KRG extract and that subsequently contribute to inhibiting the proliferation of cancer cells.

Development of Rapid Antibody-based Therapeutic Platform Correspondence for New Viruses Using Antigen-specific Single Cell Memory B Cell Sorting Technology (항원 특이적 단일 기억 B 세포 분리를 이용한 신종 바이러스 대응 신속 항체 플랫폼 개발)

  • Jiyoon Seok;Suhan Jung;Ye Gi Han;Arum Park;Jung Eun Kim;Young Jo Song;Chi Ho Yu;Hyeongseok Yun;Se Hun Gu;Seung-Ho Lee;Yong Han Lee;Gyeunghaeng Hur;Woong Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • The COVID-19 pandemic is not over despite the emergency use authorization as can see recent COVID-19 daily confirmed cases. The viruses are not only difficult to diagnose and treat due to random mutations, but also pose threat human being because they have the potential to be exploited as biochemical weapons by genetic manipulation. Therefore, it is inevitable to the rapid antibody-based therapeutic platform to quickly respond to future pandemics by new/re-emerging viruses. Although numerous researches have been conducted for the fast development of antibody-based therapeutics, it is sometimes hard to respond rapidly to new viruses because of complicated expression or purification processes for antibody production. In this study, a novel rapid antibody-based therapeutic platform using single B cell sorting method and mRNA-antibody. High immunogenicity was caused to produce antibodies in vivo through mRNA-antigen inoculation. Subsequently, antigen-specific antibody candidates were selected and obtained using isolation of B cells containing antibody at the single cell level. Using the antibody-based therapeutic platform system in this study, it was confirmed that novel antigen-specific antibodies could be obtained in about 40 days, and suggested that the possibility of rapid response to new variant viruses.

Comparison of the MGISEQ-2000 and Illumina HiSeq 4000 sequencing platforms for RNA sequencing

  • Jeon, Sol A;Park, Jong Lyul;Kim, Jong-Hwan;Kim, Jeong Hwan;Kim, Yong Sung;Kim, Jin Cheon;Kim, Seon-Young
    • Genomics & Informatics
    • /
    • v.17 no.3
    • /
    • pp.32.1-32.6
    • /
    • 2019
  • Currently, Illumina sequencers are the globally leading sequencing platform in the next-generation sequencing market. Recently, MGI Tech launched a series of new sequencers, including the MGISEQ-2000, which promise to deliver high-quality sequencing data faster and at lower prices than Illumina's sequencers. In this study, we compared the performance of two major sequencers (MGISEQ-2000 and HiSeq 4000) to test whether the MGISEQ-2000 sequencer delivers high-quality sequence data as suggested. We performed RNA sequencing of four human colon cancer samples with the two platforms, and compared the sequencing quality and expression values. The data produced from the MGISEQ-2000 and HiSeq 4000 showed high concordance, with Pearson correlation coefficients ranging from 0.98 to 0.99. Various quality control (QC) analyses showed that the MGISEQ-2000 data fulfilled the required QC measures. Our study suggests that the performance of the MGISEQ-2000 is comparable to that of the HiSeq 4000 and that the MGISEQ-2000 can be a useful platform for sequencing.

Application of Pac-Bio Sequencing, Trinity, and rnaSPAdes Assembly for Transcriptome Analysis in Medicinal Crop Astragalus membranaceus

  • Ji-Nam Kang;Si Myung Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.254-254
    • /
    • 2022
  • Astragalus membranaceus (A. membranaceus) has traditionally been used as a medicinal plant in East Asia for the treatment ofvarious diseases. A. membranaceus belongs to the legume family and is known to be rich in substances such as flavonoids and saponins. Recent pharmacological studies of A. membranaceus have shown that the plant has immunomodulatory, anti-oxidant, anti-cancer, and anti-inflammatory effects. However, knowledge of major biosynthetic pathways in A. membranaceu is still lacking. Recently developed sequencing techniques enable high-quality transcriptome analysis in plants, which is recognized as an important part in elucidating the regulatory mechanisms of many plant secondary metabolic pathways. However, it is difficult to predict the number of transcripts because plant transcripts contain a large number of isoforms due to alternative splicing events, which can vary depending on the assembly platform used. In this study, we constructed three unigene sets using Pac-Bio isoform sequencing, Trinity and rnaSPAdes assembly for detailed transcriptome analysis mA. membranaceus. Furthermore, all genes involved in the flavonoid biosynthetic pathway were searched from three unigene sets, and structural comparisons and expression profiles between these genes were analyzed. The isoflavone synthesis was active in most tissues. Flavonol synthesis was mainly active in leaves and flowers, and anthocyanin synthesis was specific in flowers. Gene structural analysis revealed structural differences in the flavonoid-related genes derived from the three unigene sets. This study suggests the need for the application of multiple unigene sets for the analysis of key biosynthetic pathways in plants.

  • PDF

Phellodendron amurense and Its Major Alkaloid Compound, Berberine Ameliorates Scopolamine-Induced Neuronal Impairment and Memory Dysfunction in Rats

  • Lee, Bom-Bi;Sur, Bong-Jun;Shim, In-Sop;Lee, Hye-Jung;Hahm, Dae-Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2012
  • We examine whether Phellodendron amurense (PA) and its major alkaloid compound, berberine (BER), improved memory defects caused by administering scopolamine in rats. Effects of PA and BER on the acetylcholinergic system and pro-inflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses for 14 days of PA (100 and 200 mg/kg, i.p.) and BER (20 mg/kg, i.p.) 30 min before scopolamine injection (2 mg/kg, i.p.). Daily administration of PA and BER improved memory impairment as measured by the passive avoidance test and reduced the escape latency for finding the platform in the Morris water maze test. Administration of PA and BER significantly alleviated memory-associated decreases in cholinergic immunoreactivity and restored brain-derived neurotrophic factor and cAMP-response element-binding protein mRNA expression in the hippocampus. PA and BER also decreased significantly the expression of proinflammatory cytokines such as interleukin-$1{\beta}$, tumor necrosis factor-${\alpha}$ and cyclooxygenase-2 mRNA in the hippocampus. These results demonstrated that PA and BER had significant neuroprotective effects against neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that PA and BER may be useful as therapeutic agents for improving cognitive functioning by stimulating cholinergic enzyme activity and alleviating inflammatory responses.

Differential Gene Expression Common to Acquired and Intrinsic Resistance to BRAF Inhibitor Revealed by RNA-Seq Analysis

  • Ahn, Jun-Ho;Hwang, Sung-Hee;Cho, Hyun-Soo;Lee, Michael
    • Biomolecules & Therapeutics
    • /
    • v.27 no.3
    • /
    • pp.302-310
    • /
    • 2019
  • Melanoma cells have been shown to respond to BRAF inhibitors; however, intrinsic and acquired resistance limits their clinical application. In this study, we performed RNA-Seq analysis with BRAF inhibitor-sensitive (A375P) and -resistant (A375P/Mdr with acquired resistance and SK-MEL-2 with intrinsic resistance) melanoma cell lines, to reveal the genes and pathways potentially involved in intrinsic and acquired resistance to BRAF inhibitors. A total of 546 differentially expressed genes (DEGs), including 239 up-regulated and 307 down-regulated genes, were identified in both intrinsic and acquired resistant cells. Gene ontology (GO) analysis revealed that the top 10 biological processes associated with these genes included angiogenesis, immune response, cell adhesion, antigen processing and presentation, extracellular matrix organization, osteoblast differentiation, collagen catabolic process, viral entry into host cell, cell migration, and positive regulation of protein kinase B signaling. In addition, using the PAN-THER GO classification system, we showed that the highest enriched GOs targeted by the 546 DEGs were responses to cellular processes (ontology: biological process), binding (ontology: molecular function), and cell subcellular localization (ontology: cellular component). Ingenuity pathway analysis (IPA) network analysis showed a network that was common to two BRAF inhibitorresistant cells. Taken together, the present study may provide a useful platform to further reveal biological processes associated with BRAF inhibitor resistance, and present areas for therapeutic tool development to overcome BRAF inhibitor resistance.

Establishment of a Pancreatic Cancer Stem Cell Model Using the SW1990 Human Pancreatic Cancer Cell Line in Nude Mice

  • Pan, Yan;Gao, Song;Hua, Yong-Qiang;Liu, Lu-Ming
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.437-442
    • /
    • 2015
  • Aim: To establish a pancreatic cancer stem cell model using human pancreatic cancer cells in nude mice to provide a platform for pancreatic cancer stem cell research. Materials and Methods: To establish pancreatic cancer xenografts using human pancreatic cancer cell line SW1990, nude mice were randomly divided into control and gemcitabine groups. When the tumor grew to a volume of $125mm^3$, they treated with gemcitabine at a dose of 50mg/kg by intraperitoneal injection of 0.2ml in the gemcitabine group, while the mice in control group were treated with the same volume of normal saline. Gemcitabine was given 2 times a week for 3 times. When the model was established, the proliferation of pancreatic cancer stem cells was observed by clone formation assay, and the protein and/or mRNA expression of pancreatic stem cell surface markers including CD24, CD44, CD133, ALDH, transcription factors containing Oct-4, Sox-2, Nanog and Gli, the key nuclear transcription factor in Sonic Hedgehog signaling pathway was detected by Western blot and/or RT-PCR to verify the reliability of this model. Results: This model is feasible and safe. During the establishment, no mice died and the weight of nude mice maintained above 16.5g. The clone forming ability in gemcitabine group was stronger than that of the control group (p<0.01). In gemcitabine group, the protein expression of pancreatic cancer stem cell surface markers including CD44, and ALDH was up-regulated, the protein and mRNA expression of nuclear transcription factor including Oct-4, Sox-2 and Nanog was also significantly increased (P<0.01). In addition, the protein expression of key nuclear transcription factor in Sonic Hedgehog signaling pathway, Gli-1, was significantly enhanced (p<0.01). Conclusions: The pancreatic cancer stem cell model was successfully established using human pancreatic cancer cell line SW1990 in nude mice. Gemcitabine could enrich pancreatic cancer stem cells, simultaneously accompanied by the activation of Sonic Hedgehog signaling pathway.

Comprehensive RNA-sequencing analysis of colorectal cancer in a Korean cohort

  • Jaeim Lee;Jong-Hwan Kim;Hoang Bao Khanh Chu;Seong-Taek Oh;Sung-Bum Kang;Sejoon Lee;Duck-Woo Kim;Heung-Kwon Oh;Ji-Hwan Park;Jisu Kim;Jisun Kang;Jin-Young Lee;Sheehyun Cho;Hyeran Shim;Hong Seok Lee;Seon-Young Kim;Young-Joon Kim;Jin Ok Yang;Kil-yong Lee
    • Molecules and Cells
    • /
    • v.47 no.3
    • /
    • pp.100033.1-100033.13
    • /
    • 2024
  • Considering the recent increase in the number of colorectal cancer (CRC) cases in South Korea, we aimed to clarify the molecular characteristics of CRC unique to the Korean population. To gain insights into the complexities of CRC and promote the exchange of critical data, RNA-sequencing analysis was performed to reveal the molecular mechanisms that drive the development and progression of CRC; this analysis is critical for developing effective treatment strategies. We performed RNA-sequencing analysis of CRC and adjacent normal tissue samples from 214 Korean participants (comprising a total of 381 including 169 normal and 212 tumor samples) to investigate differential gene expression between the groups. We identified 19,575 genes expressed in CRC and normal tissues, with 3,830 differentially expressed genes (DEGs) between the groups. Functional annotation analysis revealed that the upregulated DEGs were significantly enriched in pathways related to the cell cycle, DNA replication, and IL-17, whereas the downregulated DEGs were enriched in metabolic pathways. We also analyzed the relationship between clinical information and subtypes using the Consensus Molecular Subtype (CMS) classification. Furthermore, we compared groups clustered within our dataset to CMS groups and performed additional analysis of the methylation data between DEGs and CMS groups to provide comprehensive biological insights from various perspectives. Our study provides valuable insights into the molecular mechanisms underlying CRC in Korean patients and serves as a platform for identifying potential target genes for this disease. The raw data and processed results have been deposited in a public repository for further analysis and exploration.