• Title/Summary/Keyword: RNA content

Search Result 714, Processing Time 0.022 seconds

Inhibitory Effect of Purple Corn 'Seakso 1' Husk and Cob Extracts on Lipid Accumulation in Oleic Acid- Induced Non-Alcoholic Fatty Liver Disease HepG2 Model (올레산 유도 비알코올성 지방간세포에서 자색옥수수 색소 1호 포엽과 속대 추출물의 지질 축적 억제 효과)

  • Lee, Ki Yeon;Kim, Tae hee;Kim, Jai Eun;Bae, Son wha;Park, A-Reum;Lee, Hyo Young;Choi, Sun jin;Park, Jong yeol;Kwon, Soon bae;Kim, Hee Yeon
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.93-101
    • /
    • 2020
  • Seakso 1, a maize hybrid, was developed in 2008 by Gangwon Agricultural Research and Extension Services in Korea and registered in 2011. It is single-cross hybrid, semi-flint, deep-purple variety of corn, variety of are yellow, while the husks and cobs are purple. Due to the sensitivity of Seakso 1 to excess moisture after seeding, water supply should be carefully managed, and it should be harvested at a suitable time to obtain the highest anthocyanin content. This study investigated the hepatoprotective effect of Saekso 1 corn husk and cob extracts (EHCS) in oleic acid-induced non-alcoholic fatty liver disease (NAFLD) in HepG2 cells. EHCS showed a high level of lipid accumulation inhibiting effect. EHCS also suppressed triglyceride accumulation and inhibited expression of lipid marker genes, such as sterol regulatory element binding protein-1c (SREBP-1c) and sterol regulatory element binding protein-1a (SREBP-1a). Analysis by western blot of the expression of p-AMPK, p-SREBP1, PPARα, and FAS proteins showed that the incidence of SREBP1 protein, a major factor involved in lipid metabolism in the liver, has decreased significantly after treatment with the extracts. Moreover, the protein-induced expression of FAS, a major enzyme involved in the biosynthetic pathways of fatty acids, was decreased significantly in all concentrations. These results suggest that EHCS is a potent agent for the treatment of NAFLD.

Fermentative characteristics of yogurt using lactic acid bacteria isolated from Korean traditional fermented food (전통 발효 식품에서 분리한 유산균을 이용한 yogurt 발효특성)

  • Park, Na-Young;Lee, Shin-Ho
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.707-713
    • /
    • 2017
  • The objective of this study was to select yogurt starter from Korean traditional fermented foods. The 2 strains (KM24, KM32) among 50 strains of isolated lactic acid bacteria selected as starter based on milk clotting ability, antimicrobial activity against various pathogens, tolerance in artificial gastric and bile juice and growth in 10 % skimmed milk. The strains were identified as Lacobacillus plantarum (KM32) and Pediococcus pentosacesus (KM24) by 16S rRNA gene sequencing. Viable cell number of yogurt fermented with mixed strains (KM24 and KM32) was 9.66 log CFU/mL after fermentation for 48 h and maintained $10^9CFU/mL$ during fermentation for 72 h at $37^{\circ}C$. The pH and titratable acidity of mixed cultured yogurt were 4.25% and 0.83% after fermentation for 48 h at $37^{\circ}C$, respectively. The physico-chemical characteristics of mixed cultured yogurt after fermentation for 48 h were $38.45{\mu}g/mL$ (polyphenol content), 48.57% (DPPH radical scavenging activity) and 465.40 cp (viscosity), respectively. The mixed cultured yogurt maintained $10^9CFU/mL$ of lactic acid bacteria during storage 10 days at $4^{\circ}C$. The viable cell number of yogurt prepared with mixed culture(KM32+KM24) maintained higher and than that of control (L. casei) during storage. These results indicated the potential use of selected strains (KM32+KM24) isolated from kimchi as a yogurt starter with strong acid tolerance and probiotics properties.

Comparative Transcriptome Analysis of the Response of Two Lines of Rapeseed (Brassica napus L.) to Cold Stress (유채 두 계통에서 저온 스트레스에 반응하는 전사체 발현 비교 분석)

  • Lee, Ji-Eun;Kim, Kwang-Soo;Cha, Young-Lok;An, Da-Hee;Byun, Jong-Won;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.1
    • /
    • pp.37-71
    • /
    • 2021
  • Rapeseed is a typical winter crop, and its freezing stress tolerance is a major feature for winter survival. Therefore, it is important to comprehend clearly the physical and molecular mechanisms of rapeseed under freezing stress conditions. This study investigates the physical and transcriptome changes of two rapeseed lines, 'J8634-B-30' and 'EMS26', under cold acclimation and freezing temperature treatments. The proline content of 'J8634-B-30' at 5 ℃ increased 8.7-fold compared to that before treatment, and there was no significant change in that of 'EMS26' RNA-sequencing analysis revealed 5,083 differentially expressed genes (DEGs) of 'J8634-B-30' under cold acclimation condition. Among the genes, 2,784 (54.8%) were up-regulated and 2,299 (45.2%) were down-regulated. The DEGs of 'EMS26' under cold acclimation condition were 5,831 genes, and contained 2,199 up-regulated genes (37.7%) and 3,632 down-regulated genes (62.3%). Among them, only DEGs annotated in the cold response-related signaling pathways were selected, and their expression in the two rapeseed lines was compared. Comparative DEGs analysis indicated that cold response related signaling pathways are proline metabolism and ABA (Abscisic acid) signaling. And ICE (Inducer of CBF expression) - CBF (C-repeat-binding factor) - COR (Cold-regulated) signaling were the significantly differentially expressed transcripts in the two rapeseed lines. The major induced transcripts of 'J8634-B-30' induced P5CS (Δ'-pyrroline-5-carboxylate synthetase), which is related to proline biosynthesis, PYL (pyrabactin resistance-like protein, ABA receptor) and COR413 (cold-regulated 413 plasma membrane 1). In conclusion, these result provide a foundation for understanding the mechanisms of freezing stress tolerance in rapeseeds. Further functional studies should be performed on the freezing stress-related genes identified in this study, which can contribute to the transgenic and molecular breeding for freezing stress tolerance in rapeseed.

Loss of EMP2 Inhibits Melanogenesis of MNT1 Melanoma Cells via Regulation of TRP-2

  • Enkhtaivan, Enkhmend;Kim, Hyun Ji;Kim, Boram;Byun, Hyung Jung;Yu, Lu;Nguyen, Tuan Minh;Nguyen, Thi Ha;Do, Phuong Anh;Kim, Eun Ji;Kim, Kyung Sung;Huy, Hieu Phung;Rahman, Mostafizur;Jang, Ji Yun;Rho, Seung Bae;Lee, Ho;Kang, Gyeoung Jin;Park, Mi Kyung;Kim, Nan-Hyung;Choi, Chang Ick;Lee, Kyeong;Han, Hyo Kyung;Cho, Jungsook;Lee, Ai Young;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.203-211
    • /
    • 2022
  • Melanogenesis is the production of melanin from tyrosine by a series of enzyme-catalyzed reactions, in which tyrosinase and DOPA oxidase play key roles. The melanin content in the skin determines skin pigmentation. Abnormalities in skin pigmentation lead to various skin pigmentation disorders. Recent research has shown that the expression of EMP2 is much lower in melanoma than in normal melanocytes, but its role in melanogenesis has not yet been elucidated. Therefore, we investigated the role of EMP2 in the melanogenesis of MNT1 human melanoma cells. We examined TRP-1, TRP-2, and TYR expression levels during melanogenesis in MNT1 melanoma cells by gene silencing of EMP2. Western blot and RT-PCR results confirmed that the expression levels of TYR and TRP-2 were decreased when EMP2 expression was knocked down by EMP2 siRNA in MNT1 cells, and these changes were reversed when EMP2 was overexpressed. We verified the EMP2 gene was knocked out of the cell line (EMP2 CRISPR/Cas9) by using a CRISPR/Cas9 system and found that the expression levels of TRP-2 and TYR were significantly lower in the EMP2 CRISPR/Cas9 cell lines. Loss of EMP2 also reduced migration and invasion of MNT1 melanoma cells. In addition, the melanosome transfer from the melanocytes to keratinocytes in the EMP2 KO cells cocultured with keratinocytes was reduced compared to the cells in the control coculture group. In conclusion, these results suggest that EMP2 is involved in melanogenesis via the regulation of TRP-2 expression.