• 제목/요약/키워드: RNA Silencing

검색결과 253건 처리시간 0.031초

Non-canonical targets play an important role in microRNA stability control mechanisms

  • Park, June Hyun;Shin, Chanseok
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.158-159
    • /
    • 2017
  • MicroRNAs (miRNAs) regulate gene expression by guiding the Argonaute (Ago)-containing RNA-induced silencing complex (RISC) to specific target mRNA molecules. It is well established that miRNAs are stabilized by Ago proteins, but the molecular features that trigger miRNA destabilization from Ago proteins remain largely unknown. To explore the molecular mechanisms of how targets affect the stability of miRNAs in human Ago (hAgo) proteins, we employed an in vitro system that consisted of a minimal hAgo2-RISC in HEK293T cell lysates. Surprisingly, we found that miRNAs are drastically destabilized by binding to seedless, non-canonical targets. We showed that miRNAs are destabilized at their 3' ends during this process, which is largely attributed to the conformational flexibility of the L1-PAZ domain. Based on these results, we propose that non-canonical targets may play an important regulatory role in controlling the stability of miRNAs, instead of being regulated by miRNAs.

PIWI Proteins and piRNAs in the Nervous System

  • Kim, Kyung Won
    • Molecules and Cells
    • /
    • 제42권12호
    • /
    • pp.828-835
    • /
    • 2019
  • PIWI Argonaute proteins and Piwi-interacting RNAs (piRNAs) are expressed in all animal species and play a critical role in cellular defense by inhibiting the activation of transposable elements in the germline. Recently, new evidence suggests that PIWI proteins and piRNAs also play important roles in various somatic tissues, including neurons. This review summarizes the neuronal functions of the PIWI-piRNA pathway in multiple animal species, including their involvement in axon regeneration, behavior, memory formation, and transgenerational epigenetic inheritance of adaptive memory. This review also discusses the consequences of dysregulation of neuronal PIWI-piRNA pathways in certain neurological disorders, including neurodevelopmental and neurodegenerative diseases. A full understanding of neuronal PIWI-piRNA pathways will ultimately provide novel insights into small RNA biology and could potentially provide precise targets for therapeutic applications.

Expression of the Proto-oncogene Pokemon in Colorectal Cancer - Inhibitory Effects of an siRNA

  • Zhao, Gan-Ting;Yang, Li-Juan;Li, Xi-Xia;Cui, Hui-Lin;Guo, Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.4999-5005
    • /
    • 2013
  • Objective: This study aimed to investigate expression of the proto-oncogene POK erythroid myeloid ontogenic factor (Pokemon) in colorectal cancer (CRC), and assess inhibitory effects of a small interference RNA (siRNA) expression vector in SW480 and SW620 cells. Methods: Semi-quantitative reverse transcription-polymerase chain reaction (PCR) and immunohistochemistry were performed to determine mRNA and protein expression levels of Pokemon in CRC tissues. Indirect immunofluorescence staining was applied to investigate the location of Pokemon in SW480 and SW620 cells. The siRNA expression vectors that were constructed to express a short hairpin RNA against Pokemon were transfected to the SW480 and SW620 cells with a liposome. Expression levels of Pokemon mRNA and protein were examined by real-time quantitative-fluorescent PCR and western blot analysis. The effects of Pokemon silencing on proliferation of SW480 and SW620 cells were evaluated with reference to growth curves with MTT assays. Results: The mRNA expression level of Pokemon in tumor tissues ($0.845{\pm}0.344$) was significantly higher than that in adjacent tumor specimens ($0.321{\pm}0.197$). The positive expression ratio of Pokemon protein in CRC (87.0%) was significantly higher than that in the adjacent tissues (19.6%). Strong fluorescence staining of Pokemon protein was observed in the cytoplasm of the SW480 and SW620 cells. The inhibition ratios of Pokemon mRNA and protein in the SW480 cells were 83.1% and 73.5% at 48 and 72 h, respectively, compared with those of the negative control cells with the siRNA. In the SW620 cells, the inhibition ratios of Pokemon mRNA and protein were 76.3% and 68.7% at 48 and 72 h, respectively. MTT showed that Pokemon gene silencing inhibited the proliferation of SW480 and SW620 cells. Conclusion: Overexpression of Pokemon in CRC may have a function in carcinogenesis and progression. siRNA expression vectors could effectively inhibit mRNA and protein expression of Pokemon in SW480 and SW620 cells, thereby reducing malignant cell proliferation.

Identification of Differentially Expressed Genes in the Dicer 1 Knock-down Mouse Embryos using Microarray

  • Lee, Jae-Dal;Cui, Xiang-Shun
    • Reproductive and Developmental Biology
    • /
    • 제32권4호
    • /
    • pp.229-235
    • /
    • 2008
  • Silencing of Dicer1 by siRNA did not inhibit development up to the blastocyst stage, but decreased expression of selected transcription factors, including Oct-4, Sox2 and Nanog, suggesting that Dicer1 gene expression is associated with differentiation processes at the blastocyst stage (Cui et al., 2007). In order to get insights into genes which may be linked with microRNA system, we compared gene expression profiles in Gapdh and Dicer1 siRNA-microinjected blastocysts using the Applied Biosystem microarray technology. Our data showed that 397 and 737 out of 16354 genes were up- and down-regulated, respectively, following siRNA microinjection (p<0.05), including 24 up- and 28 down-regulated transcription factors. Identification of genes that are preferentially expressed at particular Dicer1 knock down embryos provides insights into the complex gene regulatory networks that drive differentiation processes in embryos at blastocyst stage.

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • 제37권7호
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Replication and encapsidation of recombinant Turnip yellow mosaic virus RNA

  • Shin, Hyun-Il;Kim, In-Cheol;Cho, Tae-Ju
    • BMB Reports
    • /
    • 제41권10호
    • /
    • pp.739-744
    • /
    • 2008
  • Turnip yellow mosaic virus (TYMV) is a positive strand RNA virus that infects mainly Cruciferae plants. In this study, the TYMV genome was modified by inserting an extra subgenomic RNA promoter and a multiple cloning site. This modified TYMV was introduced into Nicotiana benthamiana using a Agrobacterium-mediated T-DNA transfer system (agroinfiltration). When a gene encoding $\beta$-glucuronidase or green fluorescent protein was expressed using this modified TYMV as a vector, replication of the recombinant viruses, especially the virus containing $\beta$-glucuronidase gene, was severely inhibited. The suppression of replication was reduced by co-expression of viral silencing suppressor genes, such as tombusviral p19, closteroviral p21 or potyviral HC-Pro. As expected, two subgenomic RNAs were produced from the recombinant TYMV, where the larger one contained the foreign gene. An RNase protection assay revealed that the recombinant subgenomic RNA was encapsidated as efficiently as the genuine subgenomic RNA.

Effect of Rice stripe virus NS3 on Transient Gene Expression and Transgene Co-Silencing

  • Sohn, Seong-Han;Huh, Sun-Mi;Kim, Kook-Hyung;Park, Jin-Woo;Lomonossoff, George
    • The Plant Pathology Journal
    • /
    • 제27권4호
    • /
    • pp.310-314
    • /
    • 2011
  • Nonstructural protein 3 (NS3) encoded by RNA3 of Rice stripe virus (RSV), known to be a suppressor of gene silencing, was cloned and sequenced. The cloned NS3 gene is composed of 636 nucleotides encoding 211 deduced amino acids, and showed a high degree of similarity with the equivalent genes isolated from Korea, Japan and China. The NS3 gene promoted the enhancement of transient gene expression and suppressed transgene co-silencing. In the transient GFP expression via agroinfiltration, GFP expression was dramatically enhanced in terms of both protein yield and expression period in the presence of NS3. The highest accumulation of GFP protein reached to 6.8% of total soluble proteins, which corresponded to a two-fold increase compared to that obtained in the absence of NS3. In addition, NS3 significantly suppressed the initiation of GFP co-silencing induced by the additive GFP infiltration in GFP-transgenic Nicotiana benthamiana. The NS3 gene was also found to be a stronger suppressor than Cucumber mosaic virus 2b. These observations are believed to be derived from the strong suppressive effect of NS3 on gene silencing, and indicate that NS3 could be used as an effective enhancer for the rapid production of foreign proteins in plants.

Stearoyl-CoA desaturase induces lipogenic gene expression in prostate cancer cells and inhibits ceramide-induced cell death

  • Kim, Seung-Jin;Kim, Eung-Seok
    • Animal cells and systems
    • /
    • 제15권1호
    • /
    • pp.1-8
    • /
    • 2011
  • Perturbation of metabolism with increased expression of lipogenic enzymes is a common characteristic of human cancers, including prostate cancer. In the present work the overexpression of stearoyl-CoA desaturase (SCD) in LNCaP cells led to increased mRNA levels of fatty acid synthase (FAS) and acetyl-CoA-carboxylase-a, whereas micro RNA-mediated silencing of SCD inhibited the expression of these lipogenic genes in LNCaP cells. Treatment with the FAS-specific inhibitor cerulenin inhibited SCD induction of LNCaP cell proliferation. In addition, a transient transfection assay revealed the capability of cerulenin to suppress SCD and dihydrotestosterone induction of androgen receptor transcriptional activity. Furthermore, overexpression of SCD in LNCaP cells produced marked resistance to ceramide-induced cell death with reduced poly(ADP-ribose) polymerase (PARP) cleavage. In contrast, silencing of SCD expression increased Bax protein in LNCaP cells. Furthermore, addition of ceramide to SCD knockdown LNCaP cells increased cell death and caspase-3 activity with drastic increase of PARP cleavage. Together, the data indicate that SCD may provide resistance of prostate cancer cells to ceramide-induced cell death.