• 제목/요약/키워드: RNA Silencing

검색결과 253건 처리시간 0.024초

Extracellular acidity enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis via DR5 in gastric cancer cells

  • Hong, Ran;Han, Song Iy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권5호
    • /
    • pp.513-523
    • /
    • 2018
  • The tumor microenvironment greatly influences cancer cell characteristics, and acidic extracellular pH has been implicated as an essential factor in tumor malignancy and the induction of drug resistance. Here, we examined the characteristics of gastric carcinoma (GC) cells under conditions of extracellular acidity and attempted to identify a means of enhancing treatment efficacy. Acidic conditions caused several changes in GC cells adversely affecting chemotherapeutic treatment. Extracellular acidity did inhibit GC cell growth by inducing cell cycle arrest, but did not induce cell death at pH values down to 6.2, which was consistent with down-regulated cyclin D1 and up-regulated p21 mRNA expression. Additionally, an acidic environment altered the expression of atg5, HSPA1B, collagen XIII, collagen XXAI, slug, snail, and zeb1 genes which are related to regulation of cell resistance to cytotoxicity and malignancy, and as expected, resulted in increased resistance of cells to multiple chemotherapeutic drugs including etoposide, doxorubicin, daunorubicin, cisplatin, oxaliplatin and 5-FU. Interestingly, however, acidic environment dramatically sensitized GC cells to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Consistently, the acidity at pH 6.5 increased mRNA levels of DR4 and DR5 genes, and also elevated protein expression of both death receptors as detected by immunoblotting. Gene silencing analysis showed that of these two receptors, the major role in this effect was played by DR5. Therefore, these results suggest that extracellular acidity can sensitize TRAIL-mediated apoptosis at least partially via DR5 in GCs while it confers resistance to various type of chemotherapeutic drugs.

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • 제41권10호
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis

  • Xu, Lingling;Wu, Jie;Li, Nini;Jiang, Chengjun;Guo, Yan;Cao, Peng;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.481-492
    • /
    • 2020
  • The present study aimed to examine the effect of allyl isothiocyanate (AITC) on chronic obstructive pulmonary disease and to investigate whether upregulation of multidrug resistance-associated protein 1 (MRP1) associated with the activation of the PARK7 (DJ-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis. Lung function indexes and histopathological changes in mice were assessed by lung function detection and H&E staining. The expression levels of Nrf2, MRP1, heme oxygenase-1 (HO-1), and DJ-1 were determined by immunohistochemistry, Western blotting and reverse transcription-quantitative polymerase chain reaction. Next, the expression of DJ-1 in human bronchial epithelial (16HBE) cells was silenced by siRNA, and the effect of DJ-1 expression level on cigarette smoke extract (CSE)-stimulated protein degradation and AITC-induced protein expression was examined. The expression of DJ-1, Nrf2, HO-1, and MRP1 was significantly decreased in the wild type model group, while the expression of each protein was significantly increased after administration of AITC. Silencing the expression of DJ-1 in 16HBE cells accelerated CSE-induced protein degradation, and significantly attenuated the AITC-induced mRNA and protein expression of Nrf2 and MRP1. The present study describes a novel mechanism by which AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis.

LncRNA-IMAT1 Promotes Invasion of Meningiomas by Suppressing KLF4/hsa-miR22-3p/Snai1 Pathway

  • Ding, Yaodong;Ge, Yu;Wang, Daijun;Liu, Qin;Sun, Shuchen;Hua, Lingyang;Deng, Jiaojiao;Luan, Shihai;Cheng, Haixia;Xie, Qing;Gong, Ye;Zhang, Tao
    • Molecules and Cells
    • /
    • 제45권6호
    • /
    • pp.388-402
    • /
    • 2022
  • Malignant meningiomas often show invasive growth that makes complete tumor resection challenging, and they are more prone to recur after radical resection. Invasive meningioma associated transcript 1 (IMAT1) is a long noncoding RNA located on Homo sapiens chromosome 17 that was identified by our team based on absolute expression differences in invasive and non-invasive meningiomas. Our studies indicated that IMAT1 was highly expressed in invasive meningiomas compared with non-invasive meningiomas. In vitro studies showed that IMAT1 promoted meningioma cell invasion through the inactivation of the Krüppel-like factor 4 (KLF4)/hsa-miR22-3p/Snai1 pathway by acting as a sponge for hsa-miR22-3p, and IMAT1 knockdown effectively restored the tumor suppressive properties of KLF4 by preserving its tumor suppressor pathway. In vivo experiments confirmed that IMAT1 silencing could significantly inhibit the growth of subcutaneous tumors and prolong the survival period of tumor-bearing mice. Our findings demonstrated that the high expression of IMAT1 is the inherent reason for the loss of the tumor suppressive properties of KLF4 during meningioma progression. Therefore, we believe that IMAT1 may be a potential biological marker and treatment target for meningiomas.

PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway

  • Hong, Seo Jin;Jung, Suhan;Jang, Ji Sun;Mo, Shenzheng;Kwon, Jun-Oh;Kim, Min Kyung;Kim, Hong-Hee
    • Molecules and Cells
    • /
    • 제45권10호
    • /
    • pp.749-760
    • /
    • 2022
  • Osteoclast generation from monocyte/macrophage lineage precursor cells needs to be tightly regulated to maintain bone homeostasis and is frequently over-activated in inflammatory conditions. PARK2, a protein associated with Parkinson's disease, plays an important role in mitophagy via its ubiquitin ligase function. In this study, we investigated whether PARK2 is involved in osteoclastogenesis. PARK2 expression was found to be increased during the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. PARK2 gene silencing with siRNA significantly reduced osteoclastogenesis induced by RANKL, LPS (lipopolysaccharide), TNFα (tumor necrosis factor α), and IL-1β (interleukin-1β). On the other hand, overexpression of PARK2 promoted osteoclastogenesis. This regulation of osteoclastogenesis by PARK2 was mediated by IKK (inhibitory κB kinase) and NF-κB activation while MAPK (mitogen-activated protein kinases) activation was not involved. Additionally, administration of PARK2 siRNA significantly reduced osteoclastogenesis and bone loss in an in vivo model of inflammatory bone erosion. Taken together, this study establishes a novel role for PARK2 as a positive regulator in osteoclast differentiation and inflammatory bone destruction.

Differentially expressed mRNAs and their upstream miR-491-5p in patients with coronary atherosclerosis as well as the function of miR-491-5p in vascular smooth muscle cells

  • Ding, Hui;Pan, Quanhua;Qian, Long;Hu, Chuanxian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권3호
    • /
    • pp.183-193
    • /
    • 2022
  • MicroRNAs (miRNAs) regulate gene expression and are biomarkers for coronary atherosclerosis (AS). A novel miRNA-mRNA regulation network of coronary AS still needs to be disclosed. The aim of this study was to analyze potential mRNAs in coronary AS patients and the role of their upstream miR-491-5p in vascular smooth muscle cells (VSMCs). We first confirmed top ten mRNAs according to the analysis from Gene Expression Omnibus database (GSE132651) and examined the expression levels of them in the plaques and serum from AS patients. Five mRNAs (UBE2G2, SLC16A3, POLR2C, PNO1, and AMDHD2) presented significantly abnormal expression in both plaques and serum from AS patients, compared with that in the control groups. Subsequently, they were predicted to be targeted by 11 miRNAs by bioinformatics analysis. Among all the potential upstream miRNAs, only miR-491-5p was abnormally expressed in the plaques and serum from AS patients. Notably, miR-491-5p overexpression inhibited viability and migration, and significantly increased the expression of contractile markers (α-SMA, calponin, SM22α, and smoothelin) in VSMCs. While silencing miR-491-5p promoted viability and migration, and significantly suppressed the expression of α-SMA, calponin, SM22α, and smoothelin. Overall, miR-491-5p targeted UBE2G2, SLC16A3, and PNO1 and regulated the dysfunctions in VSMCs.

Specific Gene Silencing by Single Stranded Large Circular Antisense Molecules

  • Park, Jong-Gu
    • 대한의생명과학회지
    • /
    • 제10권2호
    • /
    • pp.65-73
    • /
    • 2004
  • I report that single-stranded antisense as a part of large circular (LC-) genomic DNA of recombinant M13 phage exhibits enhanced stability, sequence specific antisense activity, and no need for target site search. A cDNA fragment (708 bp) of rat TNF-$\alpha$ was inserted into a phagemid vector, and TNF-$\alpha$ antisense molecules (TNF$\alpha$-LCAS) were produced as single-stranded circular DNA. When introduced into a rat monocyte/macrophage cell line, WRT7/P2, TNF$\alpha$-LCAS was able to ablate LPS-induced TNF-$\alpha$ mRNA to completion. The antisense effect of TNF$\alpha$-LCAS was shown to be sequence-specific because expressions of three control genes ($\beta$-actin, GAPDH and IL-1$\beta$) were not significantly altered by the antisense treatment. Further, TNF$\alpha$-LCAS was found to be highly efficacious as only 0.1 $\mu$g (0.24 nM) of TNF$\alpha$-LCAS was sufficient to block TNF-$\alpha$ expression in 1$\times10^5$ WRT7/P2 cells. I have also observed specific antisense activity in reduction of NF-$\kappa$B gene expression. The results suggest that an antisense sequence as a part of single-stranded circular genomic DNA has a specific antisense activity.

  • PDF

Autocrine prostaglandin E2 signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway

  • Shehzad, Adeeb;Lee, Jaetae;Lee, Young Sup
    • BMB Reports
    • /
    • 제48권2호
    • /
    • pp.109-114
    • /
    • 2015
  • The COX-2/$PGE_2$ pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, $PGE_2$, in cancer survival remain unknown. Herein, we investigated $PGE_2$-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with $PGE_2$ activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. $PGE_2$ not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of $PGE_2$, and restored the menadione- induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the $PGE_2$-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that $PGE_2$ signaling acts in an autocrine manner, and specific inhibition of $PGE_2$ will provide a novel approach for the treatment of leukemia.

Silencing of COX-2 by RNAi Modulates Epithelial-Mesenchymal Transition in Breast Cancer Cells Partially Dependent on the PGE2 Cascade

  • Cao, Juan;Yang, Xiao;Li, Wen-Tong;Zhao, Chun-Ling;Lv, Shi-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권22호
    • /
    • pp.9967-9972
    • /
    • 2014
  • In order to prove whether downregulation of COX-2 (Cyclooxygenase-2) could modulate the epithelial-mesenchymal transition (EMT) of breast cancer, celecoxib and siRNA were respectively used to inhibit COX-2 function and expression in MDA-MB-231 cells. The EMT reversal effect in the RNAi treated group was better than that of the celecoxib group while there were no obvious differences in the medium $PGE_2$ levels between the two groups. The results show that COX-2 pathways may contribute considerably to EMT of breast cancer cells, partially dependent on the PGE2 cascade. Akt2, ZEB2 and Snail were measured to clarify the underlying mechanisms of COX-2 on EMT; COX-2 may modulate EMT of breast cancer by regulating these factors. This finding may be helpful to elucidate the mechanisms of selective COX-2 inhibitor action in EMT modulation in breast cancer.

Induction of Apoptosis by Eugenol and Capsaicin in Human Gastric Cancer AGS Cells - Elucidating the Role of p53

  • Sarkar, Arnab;Bhattacharjee, Shamee;Mandal, Deba Prasad
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권15호
    • /
    • pp.6753-6759
    • /
    • 2015
  • Background: Loss of function of the p53 gene is implicated in defective apoptotic responses of tumors to chemotherapy. Although the pro-apoptotic roles of eugenol and capsaicin have been amply reported, their dependence on p53 for apoptosis induction in gastric cancer cells is not well elucidated. The aim of the study was to elucidate the role of p53 in the induction of apoptosis by eugenol and capsaicin in a human gastric cancer cell line, AGS. Materials and Methods: AGS cells were incubated with or without various concentrations of capsaicin and eugenol for 12 hrs, in the presence and absence of p53 siRNA. Cell cycling, annexin V and expression of apoptosis related proteins Bax, Bcl-2 ratio, p21, cyt c-caspase-9 association, caspase-3 and caspase-8 were studied. Results: In the presence of p53, capsaicin was a more potent pro-apoptotic agent than eugenol. However, silencing of p53 significantly abrogated apoptosis induced by capsaicin but not that by eugenol. Western blot analysis of pro-apoptotic markers revealed that as opposed to capsaicin, eugenol could induce caspase-8 and caspase-3 even in the absence of p53. Conclusions: Unlike capsaicin, eugenol could induce apoptosis both in presence and absence of functional p53. Agents which can induce apoptosis irrespective of the cellular p53 status have immense scope for development as potential anticancer agents.