• Title/Summary/Keyword: RNA, messenger

Search Result 163, Processing Time 0.026 seconds

Mechanisms for Hfq-Independent Activation of rpoS by DsrA, a Small RNA, in Escherichia coli

  • Kim, Wonkyong;Choi, Jee Soo;Kim, Daun;Shin, Doohang;Suk, Shinae;Lee, Younghoon
    • Molecules and Cells
    • /
    • v.42 no.5
    • /
    • pp.426-439
    • /
    • 2019
  • Many small RNAs (sRNAs) regulate gene expression by base pairing to their target messenger RNAs (mRNAs) with the help of Hfq in Escherichia coli. The sRNA DsrA activates translation of the rpoS mRNA in an Hfq-dependent manner, but this activation ability was found to partially bypass Hfq when DsrA is overproduced. The precise mechanism by which DsrA bypasses Hfq is unknown. In this study, we constructed strains lacking all three rpoS-activating sRNAs (i.e., ArcZ, DsrA, and RprA) in $hfq^+$ and $Hfq^-$ backgrounds, and then artificially regulated the cellular DsrA concentration in these strains by controlling its ectopic expression. We then examined how the expression level of rpoS was altered by a change in the concentration of DsrA. We found that the translation and stability of the rpoS mRNA are both enhanced by physiological concentrations of DsrA regardless of Hfq, but that depletion of Hfq causes a rapid degradation of DsrA and thereby decreases rpoS mRNA stability. These results suggest that the observed Hfq dependency of DsrA-mediated rpoS activation mainly results from the destabilization of DsrA in the absence of Hfq, and that DsrA itself contributes to the translational activation and stability of the rpoS mRNA in an Hfq-independent manner.

Integrative Comparison of Burrows-Wheeler Transform-Based Mapping Algorithm with de Bruijn Graph for Identification of Lung/Liver Cancer-Specific Gene

  • Ajaykumar, Atul;Yang, Jung Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.149-159
    • /
    • 2022
  • Cancers of the lung and liver are the top 10 leading causes of cancer death worldwide. Thus, it is essential to identify the genes specifically expressed in these two cancer types to develop new therapeutics. Although many messenger RNA (mRNA) sequencing data related to these cancer cells are available due to the advancement of next-generation sequencing (NGS) technologies, optimized data processing methods need to be developed to identify the novel cancer-specific genes. Here, we conducted an analytical comparison between Bowtie2, a Burrows-Wheeler transform-based alignment tool, and Kallisto, which adopts pseudo alignment based on a transcriptome de Bruijn graph using mRNA sequencing data on normal cells and lung/liver cancer tissues. Before using cancer data, simulated mRNA sequencing reads were generated, and the high Transcripts Per Million (TPM) values were compared. mRNA sequencing reads data on lung/liver cancer cells were also extracted and quantified. While Kallisto could directly give the output in TPM values, Bowtie2 provided the counts. Thus, TPM values were calculated by processing the Sequence Alignment Map (SAM) file in R using package Rsubread and subsequently in python. The analysis of the simulated sequencing data revealed that Kallisto could detect more transcripts and had a higher overlap over Bowtie2. The evaluation of these two data processing methods using the known lung cancer biomarkers concludes that in standard settings without any dedicated quality control, Kallisto is more effective at producing faster and more accurate results than Bowtie2. Such conclusions were also drawn and confirmed with the known biomarkers specific to liver cancer.

The Peripheral Immune Landscape in a Patient with Myocarditis after the Administration of BNT162b2 mRNA Vaccine

  • Yoon, Bo Kyung;Oh, Tae Gyu;Bu, Seonghyeon;Seo, Kyung Jin;Kwon, Se Hwan;Lee, Ji Yoon;Kim, Yeumin;Kim, Jae-woo;Ahn, Hyo-Suk;Fang, Sungsoon
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.738-748
    • /
    • 2022
  • The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has posed a serious threat to global public health. A novel vaccine made from messenger RNA (mRNA) has been developed and approved for use at an unprecedented pace. However, an increased risk of myocarditis has been reported after BNT162b2 mRNA vaccination due to unknown causes. In this study, we used single-cell RNA sequencing and single-cell T cell receptor sequencing analyses of peripheral blood mononuclear cells (PBMCs) to describe, for the first time, changes in the peripheral immune landscape of a patient who underwent myocarditis after BNT162b2 vaccination. The greatest changes were observed in the transcriptomic profile of monocytes in terms of the number of differentially expressed genes. When compared to the transcriptome of PBMCs from vaccinated individuals without complications, increased expression levels of IL7R were detected in multiple cell clusters. Overall, results from this study can help advance research into the pathogenesis of BNT162b2-induced myocarditis.

Effects of Relative Lysyl Oxidase and Hydrogen Peroxide on Odontoblastic Differentiation (인간치수세포 분화과정에서 과산화수소에 대한 Lysyl Oxidase의 역할)

  • Lee, Hwa-Jeong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.321-329
    • /
    • 2013
  • Although it has been reported that lysyl oxidase (LOX) is involved in odontoblastic differentiation, the role of LOX on odontoblastic differentiation by hydrogen peroxide ($H_2O_2$) have not been clarified. In the present study, we investigated whether $H_2O_2$, reactive oxygen species (ROS), is modulated the messenger RNA (mRNA) expression and activity of LOX during odontoblastic differentiation of human dental pulp (HDP) cells. The mRNA expression was quantified by reverse transcriptase polymerase chain reaction (RT-PCR) analysis, and LOX enzyme activity was measured by high sensitive fluorescent assay. Expression of the odontoblastic differentiation marker genes were assessed in the presence and absence of specific small interfering RNAs (siRNAs) of the LOX and LOXL. The $H_2O_2$-induced mRNA expression of LOX family was significant reduction of LOX, LOXL, and LOXL3 mRNA levels in HDP cells. LOX enzyme activity was increased at $H_2O_2$ 0.3 mM for 24 hours. The mRNA expression of alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCN) was inhibited by LOX- and LOXL-specific siRNAs whereas the mRNA expression of dentin matrix protein1 (DMP1), and dentin sialophosphoprotein (DSPP) was inhibited by LOX-specific siRNA. In LOX enzyme activity, siRNA-induced knockdown of both LOX and LOXL inhibited the total amine oxidase activity in HDP cells, as in the case of mRNA expression. In conclusion, the essential role of $H_2O_2$ on odontoblastic differentiation suggests that its regulation by LOX may have pharmacologic importance in HDP cells.

Black ginseng extract ameliorates hypercholesterolemia in rats

  • Saba, Evelyn;Jeon, Bo Ra;Jeong, Da-Hye;Lee, Kija;Goo, Youn-Kyoung;Kim, Seung-Hyung;Sung, Chang-Keun;Roh, Seong-Soo;Kim, Sung Dae;Kim, Hyun-Kyoung;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.40 no.2
    • /
    • pp.160-168
    • /
    • 2016
  • Background: Ginseng (Panax ginseng Meyer) is a well-characterized medicinal herb listed in the classic oriental herbal dictionary as "Shin-nong-bon-cho-kyung." Ginseng has diverse pharmacologic and therapeutic properties. Black ginseng (BG, Ginseng Radix nigra) is produced by repeatedly steaming fresh ginseng nine times. Studies of BG have shown that prolonged heat treatment enhances the antioxidant activity with increased radical scavenging activity. Several recent studies have showed the effects of BG on increased lipid profiles in mice. In this study report the effects of water and ethanol extracts of BG on hypercholesterolemia in rats. To our knowledge, this is the first time such an effect has been reported. Methods: Experiments were conducted on male Sprague Dawley rats fed with a high-cholesterol diet supplemented with the water and ethanol extracts of BG (200 mg/kg). Their blood cholesterol levels, serum white blood cell levels, and cholesterol-metabolizing marker genes messenger RNA (mRNA) expression were determined. Liver and adipose tissues were histologically analyzed. Results: We found that BG extracts efficiently reduced the total serum cholesterol levels, low-density lipoprotein (LDL) levels with increased food efficiency ratio and increased number of neutrophil cells. It also attenuated the key genes responsible for lipogenesis, that is, acetyl-coenzyme A (CoA) acetyltransferase 2, 3-hydroxy-3-methyl-glutaryl-CoA reductase, and sterol regulatory element-binding protein 2, at the mRNA level inside liver cells. Furthermore, the BG extract also reduced the accumulation of fat in adipose tissues, and inhibited the neutral fat content in liver cells stained with hematoxylin and eosin and oil red O. Conclusion: Administration of BG extracts to Sprague Dawley rats fed with high-cholesterol diet ameliorated hypercholesterolemia, which was mediated via modulation of cholesterol-metabolizing marker genes. This data throw a light on BG's cardioprotective effects.

Temporal Changes of c-fos, c-jun, and Heat Shock Protein 25 mRNA in Rat Uterus following Estradiol Treatment (Estrogen 처리에 따른 흰쥐 자궁조직내 c-fos, c-jun, hsp25 mRNA 발현 변화)

  • Lee, Young-Ki;Kim, Sung-Rye
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.149-156
    • /
    • 1999
  • Steroid hormone is known to cause the dynamic changes of mammalian uterus during reproductive cycle, which are modulated via hypothalamus-pituitary -gonad reproductive endocrine axis. Although there were so many studies about estrogenic regulation of uterine growth and differentiation. There is little information about the effect of estrogen on the expression of various transcription factors involved in gene expression. Thus the present study was designed to demonstrate E induced expression of c-fos, c-jun, hsp25 mRNA in rat uterus. Employing Northern blot analysis, we studied the temporal expressions of c-fos, c-jun, and hsp25 messenger RNAs (mRNAs) elicited by a single 17beta-estradiol (E) treatment in the uteri of bilaterally ovariectomized adult rats. c-fos, c-jun, and hsp25 mRNA levels were increased and peaked at 3h after E administration, and then c-fos and c-jun mRNA levels were rapidly decreased to basal control level while, increased hsp25 mRNA levels were sustained till 12h post E treatment. To test the estrogenic effect on the increase of c-fos, c-jun, and hsp25 mRNA levels, we also examined the effects of antiestrogen (tamoxifen). Pretreatment with tamoxifen effectively blocked the E-induced increase of c-fos, c-jun, and hsp25 mRNA levels at 3h post E treatment. Present results suggest that transient increase of c-fos and c-jun protooncogene mRNA at the early time and simultaneous expression of hsp25 mRNA contribute to the response of uterine tissues to E in adult female rats.

  • PDF

Roles of MicroRNA-21 and MicroRNA-29a in Regulating Cell Adhesion Related Genes in Bone Metastasis Secondary to Prostate Cancer

  • Mohamad, Maisarah;Wahab, Norhazlina Abdul;Yunus, Rosna;Murad, Nor AzianAbdul;Zainuddin, Zulkifli Md;Sundaram, Murali;Mokhtar, Norfilza Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3437-3445
    • /
    • 2016
  • Background: There is an increasing concern in the role of microRNA (miRNA) in the pathogenesis of bone metastasis (BM) secondary to prostate cancer (CaP). In this exploratory study, we hypothesized that the expression of vinculin (VCL) and chemokine X3C ligand 1 (CX3CL1) might be down-regulated in clinical samples, most likely due to the post-transcriptional modification by microRNAs. Targeted genes would be up-regulated upon transfection of the bone metastatic prostate cancer cell line, PC3, with specific microRNA inhibitors. Materials and Methods: MicroRNA software predicted that miR-21 targets VCL while miR-29a targets CX3CL1. Twenty benign prostatic hyperplasia (BPH) and 16 high grade CaP formalin-fixed paraffin embedded (FFPE) specimens were analysed. From the bone scan results, high grade CaP samples were further classified into CaP with no BM and CaP with BM. Transient transfection with respective microRNA inhibitors was done in both RWPE-1 (normal) and PC3 cell lines. QPCR was performed in all FFPE samples and transfected cell lines to measure VCL and CX3CL1 levels. Results: QPCR confirmed that VCL messenger RNA (mRNA) was significantly down-regulated while CX3CL1 was up-regulated in all FFPE specimens. Transient transfection with microRNA inhibitors in PC3 cells followed by qPCR of the targeted genes showed that VCL mRNA was significantly upregulated while CX3CL1 mRNA was significantly down-regulated compared to the RWPE-1 case. Conclusions: The down-regulation of VCL in FFPE specimens is most likely regulated by miR-21 based on the in vitro evidence but the exact mechanism of how miR-21 can regulate VCL is unclear. Up-regulated in CaP, CX3CL1 was found not regulated by miR-29a. More microRNA screening is required to understand the regulation of this chemokine in CaP with bone metastasis. Understanding miRNA-mRNA interactions may provide additional knowledge for individualized study of cancers.

Particulate Matter from Asian Dust Storms Induces the Expression of Proinflammatory Cytokine in A549 Epithelial Cells (PM10이 A549 Cells에서 전염증성 Cytokine발현에 미치는 영향)

  • Kim, Jung Ho;Jeon, Hyo Keun;Kim, Mi Kyeong;Kyung, Sun Yong;An, Chang Hyeok;Lee, Sang Pyo;Park, Jung Woong;Jeong, Sung Hwan
    • Tuberculosis and Respiratory Diseases
    • /
    • v.60 no.6
    • /
    • pp.663-672
    • /
    • 2006
  • Background: $PM_{10}$(Particulate matter with a diameter ($<10{\mu}m$), which is characterized by different environmental conditions, is a complex mixture of organic and inorganic compounds. The Asian dust event caused by meteorological phenomena can also produce unique particulate matter in affected areas. This study investigated the cytokine produced by A549 epithelial cells exposed to particles collected during both the Asian dust pfenomenon and ambient air particles in a non-dusty period. Method: Air samples were collected using a high volume air sampler(Sibata Model HV500F) with an air flow at $500{\ell}/min$ for at least 6 hours. The cytokine messenger RNA(mRNA) was measured using a reverse transcriptase polymerase chain reaction(RT-PCR). The A549 cells were exposed to 10 to $500{\mu}g/m{\ell}$ of a suspension containing $PM_{10}$ for 24 hours. Each was compared with those in the non-exposed control cells. Result: The mRNA levels of interleukin(IL)-$1{\alpha}$, $IL-I{\beta}$, IL-8, and the granulocyte macrophage colony stimulating factor(GM-CSF) increased after veing exposed to $PM_{10}$ in the ambient air particles, compared with those in the non-exposed control cells. The increase in $IL-1{\alpha}$ and IL-8 were dose dependent at a $PM_{10}$ concentration between $100{\mu}g/m{\ell}$ and $500{\mu}g/m{\ell}$. The mRNA level of IL-8 in the A549 epithelial cells was higher during the in the Asian dust period($500{\mu}g/m{\ell}$) than during the non dust period. Conclusion: A549 cells exposed to the $PM_{10}$ collected during the Asian dust period produce more proinflammatory cytokine than during non-dusty period. This cytokine enhances the local inflammatory response in the airways and can also contribute to the systemic component of this inflammatory process.

Acute Toxicity of Cadmium on Gene Expression Profiling of Fleshy Shrimp, Fenneropenaeus Chinensis Postlarvae Using a cDNA Microarray (Microarray 분석을 이용한 대하 (Fenneropenaeus chinensis) 유생의 카드뮴 단기 노출에 따른 유전자변화)

  • Kim, Su-Kyoung;Qiao, Guo;Yoon, Jong-Hwa;Jang, In-Kwon
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.623-631
    • /
    • 2015
  • Microarray technology provides a unique tool for the determination of gene expression at the level of messenger RNA (mRNA). This study, the mRNA expression profiles provide insight into the mechanism of action of cadmium in Fleshy shrimp (Fenneropenaeus chinensis). The ability of genomic technologies was contributed decisively to development of new molecular biomarkers and to the determination of new possible gene targets. Also, it can be approach for monitoring of trace metal using oligo-chip microarray-based in potential model marine user level organisms. 15K oligo-chip for F. chinensis that include mostly unique sets of genes from cDNA sequences was developed. A total of 13,971 spots (1,181 mRNAs up- regulated and 996 down regulated) were identified to be significantly expressed on microarray by hierarchical clustering of genes after exposure to cadmium for different conditions (Cd24-5000 and Cd48-1000). Most of the changes of mRNA expression were observed at the long time and low concentration exposure of Cd48-1000. But, gene ontology analysis (GO annotation) were no significant different between experiments groups. It was observed that mRNA expression of main genes involved in metabolism, cell component, molecular binding and catalytic function. It was suggested that cadmium inhibited metabolism and growth of F. chinensis.

Expression of phospholipase C β1 in olive flounder (Paralichthys olivaceus) following external stress stimulation

  • Woo, Soo Ji;Jang, Hee Young;Lee, Hyung Ho;Chung, Joon Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.4
    • /
    • pp.18.1-18.10
    • /
    • 2016
  • In this study, to clarify the function of $PoPLC-{\beta}1$, in response to stress challenge, we examined the $PoPLC-{\beta}1$ expression pattern in response to external stress (pathogen-associated molecular pathogen challenge and environmental challenge including temperature and salinity). $PoPLC-{\beta}1$ expression analysis of tissue from olive flounder showed that the messenger RNA (mRNA) was predominantly expressed in the brain, heart, eye, liver, spleen, and stomach. We also tested the mRNA expression of the $PoPLC-{\beta}1$ in the spleen and kidney of olive flounder by RT-PCR and real-time PCR following stimulation with lipopolysaccharide (LPS), concanavalin A (ConA), or polyinosinic:polycytidylic acid (PolyI:C) and compared with the inflammatory cytokines IL-1b and IL-6 in the stimulated flounder tissues. Each of the spleen and kidney and mRNA transcripts of $PoPLC-{\beta}1$ were increased 30- and 10-fold than normal tissue at 1-6 h post injection (HPI) with PolyI:C when the expression of $PoPLC-{\beta}1$ transcript was similar to LPS and ConA. We also tested the expression of $PoPLC-{\beta}1$ in response to temperature and salinity stress. The expression of $PoPLC-{\beta}1$ also was affected by temperature and salinity stress. Our results provide clear evidence that the olive flounder $PLC-{\beta}1$ signal pathways may play a critical role in immune function at the cellular level and in inflammation reactions. In addition, $PLC-{\beta}1$ appears to act as an oxidative-stress suppressor to prevent cell damage in fish.