International Journal of Internet, Broadcasting and Communication
/
제13권1호
/
pp.100-106
/
2021
Over the past few decades, natural language processing research has not made much. However, the widespread use of deep learning and neural networks attracted attention for the application of neural networks in natural language processing. Sentiment analysis is one of the challenges of natural language processing. Emotions are things that a person thinks and feels. Therefore, sentiment analysis should be able to analyze the person's attitude, opinions, and inclinations in text or actual text. In the case of emotion analysis, it is a priority to simply classify two emotions: positive and negative. In this paper we propose the deep learning based sentimental analysis system according to various optimizer that is SGD, ADAM and RMSProp. Through experimental result RMSprop optimizer shows the best performance compared to others on IMDB data set. Future work is to find more best hyper parameter for sentimental analysis system.
딥러닝(Deep Learning)은 퍼셉트론을 기반으로 하고 있으며 현재에는 이미지 인식, 음성 인식, 객체 검출 및 약물 개발 등과 같은 다양한 영역에서 사용되고 있다. 이에 따라 학습 알고리즘이 다양하게 제안되었고 신경망을 구성하는 뉴런수도 연구자마다 많은 차이를 보이고 있다. 본 연구는 현재 대표적으로 사용되고 있는 확률적 경사하강법(SGD), 모멘텀법(Momentum), AdaGrad, RMSProp 및 Adam법의 뉴런수에 따른 학습 특성을 분석하였다. 이를 위하여 1개의 입력층, 3개의 은닉층, 1개의 출력층으로 신경망을 구성하였고 활성화함수는 ReLU, 손실 함수는 교차 엔트로피 오차(CEE)를 적용하였고 실험 데이터셋은 MNIST를 사용하였다. 그 결과 뉴런수는 100~300개, 알고리즘은 Adam, 학습횟수(iteraction)는 200회가 딥러닝 학습에서 가장 효율적일 것으로 결론을 내렸다. 이러한 연구는 향후 새로운 학습 데이터가 주어졌을 경우 개발될 알고리즘과 뉴런수의 기준치에 함의를 제공할 것이다.
토마토 작물은 병해충의 영향을 많이 받기 때문에 이를 예방하지 않으면 농업 경제에 막대한 손실을 초래할 수 있다. 따라서 토마토의 다양한 병해충의 진단을 빠르고 정확하게 진단하는 시스템이 요구된다. 본 논문에서는 ImageNet 데이터 셋 상에서 다양하게 사전 학습된 딥러닝 기반 CNN 모델을 적용하여 토마토의 9가지 병해충 및 정상인 경우의 클래스를 분류하는 시스템을 제안한다. PlantVillage 데이터 셋으로부터 발췌한 토마토 잎의 이미지 셋을 3가지 딥러닝 기반 CNN 구조를 갖는 ResNet, Xception, DenseNet의 입력으로 사용한다. 기본 CNN 모델 위에 톱-레벨 분류기를 추가하여 제안 모델을 구성하였으며, 훈련 데이터 셋에 대해 5-fold 교차검증 기법을 적용하여 학습시켰다. 3가지 제안 모델의 학습은 모두 기본 CNN 모델의 계층을 동결하여 학습시키는 전이 학습과 동결을 해제한 후 학습률을 매우 작은 수로 설정하여 학습시키는 미세 조정 학습 두 단계로 진행하였다. 모델 최적화 알고리즘으로는 SGD, RMSprop, Adam을 적용하였다. 실험 결과는 RMSprop 알고리즘이 적용된 DenseNet CNN 모델이 98.63%의 정확도로 가장 우수한 결과를 보였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1649-1665
/
2021
In view of the low accuracy of the traditional FunkSVD algorithm, and in order to improve the computational efficiency of the algorithm, this paper proposes a parallel algorithm of improved FunkSVD based on Spark (SP-FD). Using RMSProp algorithm to improve the traditional FunkSVD algorithm. The improved FunkSVD algorithm can not only solve the problem of decreased accuracy caused by iterative oscillations but also alleviate the impact of data sparseness on the accuracy of the algorithm, thereby achieving the effect of improving the accuracy of the algorithm. And using the Spark big data computing framework to realize the parallelization of the improved algorithm, to use RDD for iterative calculation, and to store calculation data in the iterative process in distributed memory to speed up the iteration. The Cartesian product operation in the improved FunkSVD algorithm is divided into blocks to realize parallel calculation, thereby improving the calculation speed of the algorithm. Experiments on three standard data sets in terms of accuracy, execution time, and speedup show that the SP-FD algorithm not only improves the recommendation accuracy, shortens the calculation interval compared to the traditional FunkSVD and several other algorithms but also shows good parallel performance in a cluster environment with multiple nodes. The analysis of experimental results shows that the SP-FD algorithm improves the accuracy and parallel computing capability of the algorithm, which is better than the traditional FunkSVD algorithm.
Mustafa Abdul Salam;Sanaa Taha;Sameh Alahmady;Alwan Mohamed
International Journal of Computer Science & Network Security
/
제23권5호
/
pp.73-88
/
2023
Brain tumors can also be an abnormal collection or accumulation of cells in the brain that can be life-threatening due to their ability to invade and metastasize to nearby tissues. Accurate diagnosis is critical to the success of treatment planning, and resonant imaging is the primary diagnostic imaging method used to diagnose brain tumors and their extent. Deep learning methods for computer vision applications have shown significant improvements in recent years, primarily due to the undeniable fact that there is a large amount of data on the market to teach models. Therefore, improvements within the model architecture perform better approximations in the monitored configuration. Tumor classification using these deep learning techniques has made great strides by providing reliable, annotated open data sets. Reduce computational effort and learn specific spatial and temporal relationships. This white paper describes transfer models such as the MobileNet model, VGG19 model, InceptionResNetV2 model, Inception model, and DenseNet201 model. The model uses three different optimizers, Adam, SGD, and RMSprop. Finally, the pre-trained MobileNet with RMSprop optimizer is the best model in this paper, with 0.995 accuracies, 0.99 sensitivity, and 1.00 specificity, while at the same time having the lowest computational cost.
전자상거래 발전에 따라 온라인 쇼핑을 이용하는 사람들이 증가하였고 제품 또한 다양해지고 있다. 이러한 추세로 구매자가 만족할 수 있는 정확한 추천시스템의 중요성이 증대되었으며 정확도를 높이기 위한 새로운 방법의 연구가 계속되고 있다. 순환신경망은 시퀀스 학습에 적합한 딥 러닝 방법 중 하나이며 본 연구에서는 추천시스템의 정확도를 높이는 방법으로 구매자의 제품 접근순서를 순환신경망에 적용하여 알고리즘 성능평가를 하였다. 알고리즘 성능평가에는 대표적인 순환신경망 알고리즘과 최적화 알고리즘으로 진행하였다. 순환신경망 알고리즘으로는 RNN, LSTM, GRU 그리고 최적화 알고리즘으로는 Adagrad, RMSProp, Adam optimizer를 사용하였다. 실험 도구로는 구글의 오픈소스 라이브러리인 텐서플로우를 사용하였고 데이터는 RecSys Challenge 2015에서 제공하는 e-commerce session 데이터를 활용하였다. 실험 결과 실험 데이터에 적합한 최적의 하이퍼파라미터를 발굴하고 적용하여 RecSys Challenge 2015 참가자들의 결과와 비교하였다. 상품 접근 순서만을 학습시킨 결과이기 때문에 등수가 높지는 않았지만 기존 추천시스템에 접목한다면 정확도 향상에 기여할 수 있을 것으로 보인다.
최근 기계학습에 대한 관심이 높아지고 연구가 활성화됨에 따라 다양한 기계학습 모델에서 최적의 하이퍼 파라미터 조합을 찾는 것이 중요해지고 있다. 본 논문에서는 다양한 하이퍼 파라미터 중에서 옵티마이저에 중점을 두고, 다양한 데이터에서 주요 옵티마이저들의 성능을 측정하고 비교하였다. 특히, 가장 기본이 되는 SGD부터 Momentum, NAG, AdaGrad, RMSProp, AdaDelta, Adam, AdaMax, Nadam까지 총 9개의 옵티마이저의 성능을 MNIST, CIFAR-10, IRIS, TITANIC, Boston Housing Price 데이터를 이용하여 비교하였다. 실험 결과, 전체적으로 Adam과 Nadam을 사용하였을 때 기계학습 모델의 손실 함숫값이 가장 빠르게 감소하는 것을 확인할 수 있었으며, F1 score 또한 높아짐을 확인할 수 있었다. 한편, AdaMax는 학습 중에 불안정한 모습을 많이 보여주었으며, AdaDelta는 다른 옵티마이저들에 비하여 수렴 속도가 느리며 성능이 낮은 것을 확인할 수 있었다.
인터넷이 대중화되기 시작하면서 해킹 및 시스템과 네트워크에 대한 공격이 있어 왔고, 날로 그 기법들이 진화되면서 기업 및 사회에 위험과 부담감을 주었다. 그러한 위험과 부담감을 덜기 위해서는 조기에 해킹 및 공격을 탐지하여 적절하게 대응해야 하는데, 그에 앞서 반드시 네트워크 침입탐지의 신뢰성을 높일 필요가 있다. 본 연구에서는 네트워크 침입탐지 정확도를 향상시키기 위해 가중치 초기화와 가중치 최적화를 KDD'99 데이터셋에 적용하는 연구를 하였다. 가중치 초기화는 Xavier와 He 방법처럼 가중치 학습 구조와 관련된 초기화 방법이 정확도에 영향을 준다는 것을 실험을 통해 알 수 있었다. 또한 가중치 최적화는 현재 가중치를 학습률에 반영할 수 있도록 한 RMSProp와 이전 변화를 반영한 Momentum의 장점을 결합한 Adam 알고리즘이 정확도면에서 단연 돋보임을 네트워크 침입탐지 데이터셋의 실험을 통해 확인하였다.
철근콘크리트 손상 감지를 위한 무인항공기와 딥러닝 연계에 대한 연구가 활발히 진행 중이다. 컨볼루션 신경망은 객체 분류, 검출, 분할 모델의 백본으로 모델 성능에 높은 영향을 준다. 사전학습 컨볼루션 신경망인 모바일넷은 적은 연산량으로 충분한 정확도가 확보 될 수 있어 무인항공기 기반 실시간 손상 감지 백본으로 효율적이다. 바닐라 컨볼루션 신경망과 모바일넷을 분석 한 결과 모바일넷이 바닐라 컨볼루션 신경망의 15.9~22.9% 수준의 낮은 연산량으로도 6.0~9.0% 높은 검증 정확도를 가지는 것으로 평가되었다. 모바일넷V2, 모바일넷V3Large, 모바일넷 V3Small은 거의 동일한 최대 검증 정확도를 가지는 것으로 나타났으며 모바일넷의 철근콘트리트 손상 이미지 특성 추출 최적 조건은 옵티마이저 RMSprop, 드롭아웃 미적용, 평균풀링인 것으로 분석되었다. 본 연구에서 도출된 모바일넷V2 기반 7가지 손상 감지 최대 검증 정확도 75.49%는 이미지 축적과 지속적 학습으로 향상 될 수 있다.
본 연구에서는 CNN과 빅데이터 기술을 이용한 Deep Learning을 통해 흉부 X-ray 영상 분류 및 정확성 연구에 대하여 알아보고자 한다. 총 5,873장의 흉부 X-ray 영상에서 Normal 1,583장, Pneumonia 4,289장을 사용하였다. 데이터 분류는 train(88.8%), validation(0.2%), test(11%)로 분류하였다. Convolution Layer, Max pooling layer pool size 2×2, Flatten layer, Image Data Generator로 구성하였다. Convolution layer가 3일 때와 4일 때 각각 filter 수, filter size, drop out, epoch, batch size, 손실함수 값을 설정하였다. test 데이터로 Convolution layer가 4일 때, filter 수 64-128-128-128, filter size 3×3, drop out 0.25, epoch 5, batch size 15, 손실함수 RMSprop으로 설정 시 정확도가 94.67%였다. 본 연구를 통해 높은 정확성으로 분류가 가능하였으며, 흉부 X-ray 영상뿐만 아니라 다른 의료영상에서도 많은 도움이 될 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.